Questõessobre Progressões
O artista gráfico holandês Maurits Cornelius Escher
criou belíssimas obras nas quais as imagens se repetiam,
com diferentes tamanhos, induzindo ao raciocínio de
repetição infinita das imagens. Inspirado por ele, um artista
fez um rascunho de uma obra na qual propunha a ideia
de construção de uma sequência de infinitos quadrados,
cada vez menores, uns sob os outros, conforme indicado
na figura.
O quadrado PRST, com lado de medida 1, é o ponto
de partida. O segundo quadrado é construído sob ele
tomando-se o ponto médio da base do quadrado anterior
e criando-se um novo quadrado, cujo lado corresponde
à metade dessa base. Essa sequência de construção se
repete recursivamente.
Qual é a medida do lado do centésimo quadrado
construído de acordo com esse padrão?
No Brasil, o tempo necessário para um estudante
realizar sua formação até a diplomação em um
curso superior, considerando os 9 anos de ensino
fundamental, os 3 anos do ensino médio e os 4 anos de
graduação (tempo médio), é de 16 anos. No entanto,
a realidade dos brasileiros mostra que o tempo médio
de estudo de pessoas acima de 14 anos é ainda muito
pequeno, conforme apresentado na tabela.
Considere que o incremento no tempo de estudo,
a cada período, para essas pessoas, se mantenha
constante até o ano 2050, e que se pretenda chegar ao
patamar de 70% do tempo necessário à obtenção do
curso superior dado anteriormente.
O ano em que o tempo médio de estudo de pessoas
acima de 14 anos atingirá o percentual pretendido será
Em janeiro de 2010, certa indústria deu férias coletivas a seus funcionários, e a partir de fevereiro recomeçou sua produção. Considere que a cada mês essa produção cresceu em progressão aritmética, que a diferença de produção dos meses de abril e outubro de 2010 foi de 420 itens, e que em outubro a produção foi de 1120 itens.
Desta forma, pode-se concluir que o número de itens produzidos em agosto de 2010 foi:
Em janeiro de 2010, certa indústria deu férias coletivas a seus funcionários, e a partir de fevereiro recomeçou sua produção. Considere que a cada mês essa produção cresceu em progressão aritmética, que a diferença de produção dos meses de abril e outubro de 2010 foi de 420 itens, e que em outubro a produção foi de 1120 itens.
Desta forma, pode-se concluir que o número de itens produzidos em agosto de 2010 foi:
Se ( x1, x2, x3,﹒﹒﹒﹒ , x12, x13 ) é a progressão
aritmética crescente, no intervalo [0. 2 π],
tal que x1 = 0 e x13 = 2 π, então,
o valor da expressão
senx1.cosx2 + senx3.cosx4 + ﹒﹒﹒﹒ + senx11.cosx12 é
igual a
Considerando f : R → R a função definida por
f(x) = 3.2x e ( x1, x2, x3,﹒﹒ ﹒, xn,﹒﹒﹒ ) uma
progressão aritmética cujo primeiro termo x1 é igual
a um e cuja razão é igual a -1/2 , pode-se afirmar
corretamente que o valor da “soma infinita’’
f(x1) + f(x2) + f(x3) + ﹒﹒﹒﹒ + f(xn) + ﹒﹒﹒﹒ é igual a
Analise as afirmações a seguir e assinale a alternativa que contém todas as corretas.
I Uma sequência numérica é determinada conforme a lei an = n2 + 2. Essa sequência é uma progressão aritmética de
razão 2.
ll Ronei contratou, durante trinta dias, um jardineiro para fazer um serviço em sua casa por 400 reais. Contudo, ao
negociarem a forma de pagamento o jardineiro propôs o seguinte: em vez de R$ 400,00, gostaria de receber um
pouquinho a cada dia: R$ 1,00 no primeiro dia, R$ 2,00 no segundo dia, R$ 3,00 no terceiro dia, e assim por diante,
recebendo sempre a cada dia, R$ 1,00 a mais que no dia anterior. Então, ao aceitar a proposta Ronei terá um prejuízo de 65 reais.
III
A Onça e a libra são unidades de massa do sistema inglês. Sabe-se que 16 onças equivalem a uma libra. Considerando uma libra igual a 453,60 gramas, então, 128 onças equivalem a menos que 4 kg.
IV Um comerciante, visando aumentar as vendas de seu estabelecimento, fez uma promoção para determinado produto.
Na compra de 4 unidades desse produto o cliente leva 5 unidades para casa. Então quando um cliente compra de
oito unidades desse produto, e consequentemente leva 10 unidades para casa, estará recebendo um desconto equivalente a 25% do preço sem a promoção.
Analise as afirmações a seguir e assinale a alternativa que contém todas as corretas.
I Uma sequência numérica é determinada conforme a lei an = n2 + 2. Essa sequência é uma progressão aritmética de razão 2.
ll Ronei contratou, durante trinta dias, um jardineiro para fazer um serviço em sua casa por 400 reais. Contudo, ao negociarem a forma de pagamento o jardineiro propôs o seguinte: em vez de R$ 400,00, gostaria de receber um pouquinho a cada dia: R$ 1,00 no primeiro dia, R$ 2,00 no segundo dia, R$ 3,00 no terceiro dia, e assim por diante, recebendo sempre a cada dia, R$ 1,00 a mais que no dia anterior. Então, ao aceitar a proposta Ronei terá um prejuízo de 65 reais.
III
A Onça e a libra são unidades de massa do sistema inglês. Sabe-se que 16 onças equivalem a uma libra. Considerando uma libra igual a 453,60 gramas, então, 128 onças equivalem a menos que 4 kg.
IV Um comerciante, visando aumentar as vendas de seu estabelecimento, fez uma promoção para determinado produto.
Na compra de 4 unidades desse produto o cliente leva 5 unidades para casa. Então quando um cliente compra de
oito unidades desse produto, e consequentemente leva 10 unidades para casa, estará recebendo um desconto equivalente a 25% do preço sem a promoção.
Sabendo-se que as medidas, em metros, dos lados de um triângulo estão em progressão geométrica, nessa ordem, e são expressas por x + 1, 2x e x2, pode-se concluir que a medida do perímetro, desse triângulo, é
Sabe-se que x + 3, 4x + 2 e 6x + 3 são, nessa ordem, três termos
consecutivos de uma Progressão Geométrica crescente e constituem as medidas dos lados de um triângulo escaleno. A medida
do perímetro desse triângulo é, em u.c., igual a
Considerando a progressão aritmética (xn), cujo
primeiro termo x1 é igual a π/4 e a razão é igual
a π/2 , pode-se definir, para cada inteiro positivo n, a
soma Sn = sen(x1)+sen(x2)+sen(x3)+ ... +sen(xn).
Nessas condições, S2019 é igual a
O número inteiro n , maior do que 3, para o
qual os números estão, nessa ordem,
em progressão aritmética é
O número inteiro n , maior do que 3, para o qual os números estão, nessa ordem, em progressão aritmética é
Assinale a única alternativa correta, para a PA de quatro termos, em que o 1º termo é a 1
= -6 e a razão é r = 8
A PG é toda sequência de números não nulos na qual é constante o quociente da divisão de cada termo “a partir do
segundo” pelo termo anterior. Esse quociente constante é chamado de razão da progressão. Assinale a única alternativa
correta, após determinar a razão de (2, 8,...)
Para estudos relacionados ao crescimento populacional de algumas espécies, existe um modelo matemático simples. Ele é chamado o Modelo de Crescimento Exponencial (Modelo de Malthus), isto é, a taxa de variação da população em relação ao tempo é proporcional à população presente, sendo denotada pelo modelo P(t) = Po.ekt, em que Po é população i e k é uma taxa constante de crescimento (k > 0) ou decrescimento (k < 0). (PARA ESTUDOS, 2019).
Considere a população de uma determinada cidade que cresce de acordo com o modelo P(t) =
Po.e0,01t, em que Po é a população inicial e t é o tempo medido em anos.
De acordo com essas informações, o tempo necessário para essa população dobrar de tamanho, dado loge2 = 0,69, é de
Para estudos relacionados ao crescimento populacional de algumas espécies, existe um modelo matemático simples. Ele é chamado o Modelo de Crescimento Exponencial (Modelo de Malthus), isto é, a taxa de variação da população em relação ao tempo é proporcional à população presente, sendo denotada pelo modelo P(t) = Po.ekt, em que Po é população i e k é uma taxa constante de crescimento (k > 0) ou decrescimento (k < 0). (PARA ESTUDOS, 2019).
Considere a população de uma determinada cidade que cresce de acordo com o modelo P(t) =
Po.e0,01t, em que Po é a população inicial e t é o tempo medido em anos.
De acordo com essas informações, o tempo necessário para essa população dobrar de tamanho, dado loge2 = 0,69, é de