• Uma esfera de massa 1000g encontra-se em
equilíbrio estático quando suspensa por uma mola
ideal que está presa, por uma de suas extremidades, ao teto de um elevador que executa um movimento de ascensão com velocidade constante de
módulo 2m.s-1. Quando o botão de emergência é
acionado, o elevador para subitamente e, então, o
sistema mola+esfera passa a oscilar em MHS com
amplitude de 10cm. Determine, em unidades do
SI, a constante elástica da mola. Despreze a resistência do ar durante a oscilação.
Adote: √20 = 4,5
• Uma esfera de massa 1000g encontra-se em equilíbrio estático quando suspensa por uma mola ideal que está presa, por uma de suas extremidades, ao teto de um elevador que executa um movimento de ascensão com velocidade constante de módulo 2m.s-1. Quando o botão de emergência é acionado, o elevador para subitamente e, então, o sistema mola+esfera passa a oscilar em MHS com amplitude de 10cm. Determine, em unidades do SI, a constante elástica da mola. Despreze a resistência do ar durante a oscilação.
Adote: √20 = 4,5
Quando necessário, adote:
• módulo da aceleração da gravidade: 10 m.s-2
• calor latente de vaporização da água: 540 cal.g-1
• calor específico da água: 1,0 cal.g-1. °C-1
• densidade da água: 1 g.cm-3
• constante universal dos gases ideais: R = 8,0 J.mol-1.K-1
• massa específica do ar: 1,225.10-3 g.cm-3
• massa específica da água do mar: 1,025 g.cm-3
• 1cal = 4,0 J
Quando necessário, adote:
• módulo da aceleração da gravidade: 10 m.s-2
• calor latente de vaporização da água: 540 cal.g-1
• calor específico da água: 1,0 cal.g-1. °C-1
• densidade da água: 1 g.cm-3
• constante universal dos gases ideais: R = 8,0 J.mol-1.K-1
• massa específica do ar: 1,225.10-3 g.cm-3
• massa específica da água do mar: 1,025 g.cm-3
• 1cal = 4,0 J