Questão 87be3911-b4
Prova:UEFS 2011
Disciplina:Matemática
Assunto:Números Complexos

Diz-se que um número inteiro positivo x é um número perfeito, quando é a soma de todos os seus divisores positivos, exceto ele próprio. Por exemplo, 28 é um número perfeito, pois 28 = 1 + 2 + 4 + 7 + 14. A última proposição do nono livro dos Elementos de Euclides prova que se n é um inteiro positivo, tal que 2n −1 é um número primo, então 2n–1(2n −1) é um número perfeito. Euler provou que todo número perfeito par tem essa forma, mas ainda não são conhecidos números perfeitos ímpares.

O menor elemento do conjunto P = {n ∈ Z*/ 2n−1(2n −1) > 1128}, para o qual 2n–1(2n −1) é um número perfeito, é

A
5
B
6
C
7
D
8
E
9

Estatísticas

Questões para exercitar

Artigos relacionados

Dicas de estudo