Questão 584ced5a-54
Prova:ENEM 2009
Disciplina:Matemática
Assunto:Geometria Plana

Considere um ponto P em uma circunferência de raio r no plano cartesiano. Seja Q a projeção ortogonal de P sobre o eixo x, como mostra a figura, e suponha que o ponto P percorra, no sentido anti-horário, uma distância d ≤ r sobre a circunferência.

Imagem 058.jpg

Então, o ponto Q percorrerá, no eixo x, uma distância dada por

A
r ( 1 - sen dr )
B
r ( 1 - cos dr )
C
r ( 1 - tg dr )
D
rsen ( rd )
E
rcos ( rd )

Gabarito comentado

Vinícius WerneckMatemático e Doutor em Geofísica.

Vemos que na figura, é mostrado o ponto P se deslocando-se até P’ e sua respectiva projeção indo d Q para Q’. Temos que a distância percorrida pelo arco, cujo comprimento é d, será: d = r.t, sendo a o ângulo central medido em radianos.

A distância pedida no eixo x é o segmento QQ’ = r- x, onde x é o cateto adjacente ao ângulo (triângulo pintado na figura).


Logo: cos(t) = x/r →x= r.cos(t) e d = r.t → t = d/r, logo: segmento QQ’ = r - x = r – r cos (d/r), logo:


Estatísticas

Aulas sobre o assunto

Questões para exercitar

Artigos relacionados

Dicas de estudo