Questõesde UNEB sobre Radioatividade: Reações de Fissão e Fusão Nuclear, Desintegração Radioativa e Radioisótopos.

1
1
1
Foram encontradas 8 questões
07d5916b-ba
UNEB 2016 - Química - Radioatividade: Reações de Fissão e Fusão Nuclear, Desintegração Radioativa e Radioisótopos., Transformações Químicas e Energia

Uma análise das informações do texto e das figuras A e B com base nos conhecimentos da radioatividade permite corretamente afirmar:

Um tremor de 5,1 pontos na escala Richter, cujo epicentro coincidiu com as instalações militares de Punggye-ri, na Coreia do Norte, foi captado por centros de sismologia em diversas partes do mundo e obrigou a comunidade internacional a convocar seus porta-vozes para as declarações de repúdio de praxe. Afinal, os abalos iniciaram-se exatamente no local onde o regime norte-coreano realizou três testes nucleares desde 2006.
A preocupação aumentou quando o regime do ditador Kim Jong-un divulgou que os tremores eram o resultado de um teste bem-sucedido de uma bomba de hidrogênio, ou termonuclear.A posse de uma bomba de hidrogênio, representaria um sombrio salto tecnológico para a Coreia do Norte, que tem o regime mais fechado e repressor do mundo, ainda mais se for verdade que os cientistas norte-coreanos desenvolveram um artefato pequeno o suficiente para ser instalado em um míssil. As análises do impacto da explosão, no entanto, desmontaram a versão do regime norte-coreano. Jong-un está blefando.
Os principais centros de estudos de armas nucleares calculam que os abalos de 5,1 na escala Richter iniciados em Punggye-ri foram provocados por uma explosão de 6 quilotons. Para que se tratasse de uma bomba H, a detonação deveria ser dez vezes maior, gerando tremores de magnitude superior a 7 pontos na escala Richter. (COUTINHO, 2016, p. 52-53).


A
) A energia para desencadear a explosão da bomba de hidrogênio é gerada na fusão de urânio 235 da bomba atômica.
B
O elemento químico, formado na fusão de isótopos de hidrogênio, representado por y na equação nuclear III, é o hélio
C
A equação nuclear II do processo de fissão nuclear do urânio-236 apresenta x como um isótopo do ítrio, formado na cadeia de reações nucleares.
D
A explosão da bomba atômica ocorre se a soma das massas de urânio 235 e de explosivo nuclear for inferior à massa crítica para explosão.
E
Os abalos sísmicos de 5,1 na escala Richter foram produzidos pela explosão de uma bomba atômica de carga explosiva equivalente a 60mil toneladas de TNT.
07b21fee-ba
UNEB 2016 - Química - Radioatividade: Reações de Fissão e Fusão Nuclear, Desintegração Radioativa e Radioisótopos., Transformações Químicas e Energia

Em uma análise paleontológica, foi descoberto um fóssil de um determinado animal que apresentava, aproximadamente, 6,16 gramas de 14C, elemento radioativo que possui uma meia-vida de 5730 anos, considere que, na morte desse animal, a concentração do isótopo de carbono 14 em seu corpo era de 98,6g.

A partir dessas informações, é correto afirmar:

O quarteto de novos elementos químicos completa o sétimo período. O nome deles ainda é provisório e o número atômico, irrevogável — unúntrio 113, unumpêntio 115, ununséptio 117 e ununóctio 118. A IUPAC manda usar, antes do registro definitivo, a raiz latina de cada número, daí o “un”, “un”, “óctio” se referir a 118. Eles foram descobertos por físicos dos Estados Unidos, Rússia e Japão. Não será surpresa vê-los, depois, nomeados com alguma referência ao país de descoberta. São extremamente instáveis e têm uma meia-vida de milissegundos, a meia-vida é a designação usada para definir o tempo que uma amostra leva para se reduzir à metade, de átomos radioativos. (BEER, 2016, p. 64- 67).
A
Características anatômicas e fisiológicas não podem ser elucidadas a partir da paleontologia, que contribui apenas com restos petrificados.
B
A utilização do 14C na fotossíntese poderia ser detectada no carboidrato armazenado nas raízes, sob a forma de glicogênio.
C
A datação de um fóssil pode ser feita, com segurança, a partir de qualquer elemento químico radioativo, presente nas rochas onde os fósseis foram encontrados.
D
O registro fóssil constitui uma prova incontestável da necessidade de uma linhagem parar de evoluir depois de adaptada.
E
O fóssil referido apresenta uma idade estimada de, aproximadamente, 22920 anos.
4a28fbf0-bc
UNEB 2013 - Química - Radioatividade: Reações de Fissão e Fusão Nuclear, Desintegração Radioativa e Radioisótopos., Transformações Químicas e Energia

Tratando-se do comportamento de nêutrons e sobre o processo de fissão nuclear, é correto afirmar:

A maior parte do plutônio radioativo, 23994PU, meia-vida de aproximadamente 24 mil anos, disponível no Planeta, foi produzida pelos humanos — cerca de 500 toneladas métricas, o suficiente para produzir 100 mil bombas nucleares. Grande parte desse arsenal integra o legado da corrida nuclear entre Estados Unidos e União Soviética ao longo da Guerra Fria, mas cada vez mais esses estoques resultam da atual energia nuclear por fissão.
Japão, França, Rússia e Estados Unidos também usam plutônio como combustível nos chamados “reatores rápidos” que utilizam nêutrons para iniciar a fissão. (BIELLO, 2012, p. 11).
A
A colisão de um nêutron com um átomo de metal pesado provoca a redução de massa do núcleo e a emissão exclusiva de partícula α.
B
O processo de fissão de um núcleo atômico ocorre de forma espontânea na natureza com a liberação apenas de radiacão γ.
C
O princípio de funcionamento de reatores nucleares é a colisão sucessiva de nêutrons com núcleos de radionuclídeos pesados, o que dá início a uma reação em cadeia.
D
Um nêutron lançado em uma região de um campo elétrico de intensidade constante adquire aceleração constante.
E
A quantidade de movimento de um nêutron aumenta à medida que se aproxima do núcleo de um átomo de metal pesado porque a ação do campo magnético aumenta o módulo da velocidade dessa partícula.
4a248b2d-bc
UNEB 2013 - Química - Radioatividade: Reações de Fissão e Fusão Nuclear, Desintegração Radioativa e Radioisótopos., Transformações Químicas e Energia



Considerando-se as informações do texto, as equações nucleares, com base na tabela periódica e nas tendências das propriedades dos elementos químicos, é correto afirmar:

A maior parte do plutônio radioativo, 23994PU, meia-vida de aproximadamente 24 mil anos, disponível no Planeta, foi produzida pelos humanos — cerca de 500 toneladas métricas, o suficiente para produzir 100 mil bombas nucleares. Grande parte desse arsenal integra o legado da corrida nuclear entre Estados Unidos e União Soviética ao longo da Guerra Fria, mas cada vez mais esses estoques resultam da atual energia nuclear por fissão.
Japão, França, Rússia e Estados Unidos também usam plutônio como combustível nos chamados “reatores rápidos” que utilizam nêutrons para iniciar a fissão. (BIELLO, 2012, p. 11).
A
Após decorridos 48 mil anos, 500 toneladas métricas de plutônio 239 terão perdido 80% de atividade radioativa.
B
O plutônio 239 deve ser enterrado durante um período de 24 mil anos para que perca por completo a atividade radioativa.
C
O isótopo 239 de plutônio é gasoso à temperatura ambiente em razão da instabilidade radioativa que apresenta.
D
O elemento químico plutônio apresenta configuração eletrônica representada por [Rn] 5f6 7s2 porque pertence ao mesmo grupo periódico do elemento químico ferro.
E
O plutônio 239 se acumula no lixo nuclear das usinas geradoras de eletricidade em consequência do bombardeio de urânio 238 por nêutrons, seguido da emissão de partículas beta, 0-1β, representadas por x e y nas equações nucleares II e III.
2de98255-bb
UNEB 2018 - Química - Radioatividade: Reações de Fissão e Fusão Nuclear, Desintegração Radioativa e Radioisótopos., Transformações Químicas e Energia

As pesquisas geológicas sobre as modificações que ocorreram na constituição da Terra são importantes para entender a evolução do planeta e de sua atmosfera. A presença dos gases nobres argônio e xenônio, que não interagem de forma espontânea com os outros elementos existentes na Natureza, é importante para os estudos que tentam elucidar a origem da atmosfera terrestre. O argônio tem três isótopos, entre eles o argônio 40, , originário do decaimento radioativo do potássio 40,, e o xenônio tem nove, a exemplo do xenônio 129, , obtido a partir do decaimento do iodo radiativo 129, , que não existe mais nesse planeta. (CLAUDE; STEPHEN, 2013, p. 13).

Considerando-se as informações e os conhecimentos sobre estrutura atômica e radioatividade, é correto afirmar:

A
O argônio e o xenônio são substâncias simples gasosas constituídas por moléculas diatômicas.
B
A estrutura do átomo de argônio apresenta o mesmo número de níveis eletrônicos do átomo de potássio.
C
O número de nêutrons no núcleo atômico do potássio 40 é igual ao número de prótons no núcleo do argônio 40.
D

A emissão da radiação gama,, pelo potássio 40 levou à formação do isótopo 40 do elemento químico argônio.

E

O isótopo do xenônio representado por foi obtido pela emissão de uma partícula beta, , pelo iodo 129.

3285d3c5-ba
UNEB 2017 - Química - Radioatividade: Reações de Fissão e Fusão Nuclear, Desintegração Radioativa e Radioisótopos., Transformações Químicas e Energia

Levando-se em consideração a equação nuclear e as informações do texto, é correto concluir:


A nova Tabela Periódica, atualizada em março de 2017 pela IUPAC, contém os nomes e símbolos dos elementos químicos niônio113, moscóvio115, tennessínio117 e oganessônio118, em homenagem aos pesquisadores e descobridores japoneses, russos e americanos. Os novos elementos são transactinoides de existência efêmera, de frações de segundos e foram sintetizados nos aceleradores de partículas. Assim, completam o sétimo período da Tabela. A equipe de pesquisadores do niônio113, vai em busca do 119 e de suas propriedades, o primeiro elemento químico do oitavo período. As propriedades periódicas dos elementos químicos, organizados em grupos e períodos, estão relacionadas aos números atômicos e configurações eletrônicas. As tendências dessas propriedades são verificadas em um grupo ou de um grupo para o outro, ou entre elementos de um período.

A
No decaimento do niônio, são emitidas 6 partículas alfa, representadas por x na equação nuclear.
B
Ao emitir 3 partículas alfa, o niônio 278 decai até o dúbnio 262.
C
O elemento químico tennessínio é um halogênio gasoso, à temperatura ambiente.
D
O moscóvio apresenta maior primeira energia de ionização, dentre os elementos químicos do grupo 15.
E
O mendelévio 254 possui o mesmo número de nêutrons que o isótopo 258.
18d87b15-b2
UNEB 2017 - Química - Radioatividade: Reações de Fissão e Fusão Nuclear, Desintegração Radioativa e Radioisótopos., Transformações Químicas e Energia

A radioatividade é bastante utilizada na medicina, através dos exames de raio-X, cuja radiação atravessa os tecidos com o objetivo de mostrar internamente o corpo humano, e sua faixa de frequência encontra-se entre 2,4.1016Hz e 5,0.1019Hz.
Considerando-se um raio-X de frequência 4,2.1016Hz propagando-se em um meio em que seu comprimento de onda é igual a 0,2nm, é correto afirmar que a velocidade de propagação nesse meio, em 106 m/s, é igual a


Quem tem medo da radioatividade?

Como herança da destruição causada pela explosão das bombas atômicas ao fim da Segunda Guerra, a energia nuclear ganhou uma reputação difícil de mudar. Um novo livro desmistifica a radioatividade e aponta as vantagens e desvantagens de seu uso. Foram mais de cem mil mortos imediatamente após a explosão das bombas nucleares em Hiroshima e Nagasaki, em agosto de 1945. Ironicamente, as mesmas propriedades do átomo capazes de causar tamanha destruição também podiam salvar vidas se empregadas no tratamento de câncer. A radioterapia, o exame de raios-X e o marca-passo artificial são exemplos de aplicações pacíficas da radioatividade. Para muitos, no entanto, a função da energia nuclear se resume a dizimar vidas. O temor suscitado pelos cogumelos atômicos se espalhou pelo mundo e ecoa até hoje devido à falta de informações precisas sobre o tema.

O risco de acidentes e a destinação do lixo nuclear são tratados de forma esclarecedora, ao se destacarem as aplicações da tecnologia nuclear na medicina molecular, na agricultura, na indústria e na datação de artefatos na arqueologia, e tudo que envolve a geração de energia nas usinas nucleares, como alternativa à queima de combustíveis fósseis das usinas termelétricas de gás e carvão e ao impacto socioambiental das hidrelétricas. Os fantasmas associados às usinas nucleares – o risco de acidentes e a destinação do lixo nuclear – são tratados de forma esclarecedora pelos pesquisadores sobre a radioatividade. (VENTURA, 2017);

A
8,4
B
7,5
C
6,8
D
5,5
E
4,0
18ded0a9-b2
UNEB 2017 - Química - Radioatividade: Reações de Fissão e Fusão Nuclear, Desintegração Radioativa e Radioisótopos., Transformações Químicas e Energia

Foram mais de cem mil mortos imediatamente após a explosão das bombas nucleares em Hiroshima e Nagasaki em agosto de 1945. Noventa por cento deles eram civis. Era o fim da Segunda Guerra Mundial, mas o sofrimento de milhares de pessoas não terminaria em 1945. Gerações depois, as sequelas da radioatividade ainda eram sentidas, como mostram os altos índices de câncer de mama nas meninas nascidas em Hiroshima, no pós-guerra.
Com base nos textos e nos conhecimentos sobre radioatividade, é correto afirmar


Quem tem medo da radioatividade?

Como herança da destruição causada pela explosão das bombas atômicas ao fim da Segunda Guerra, a energia nuclear ganhou uma reputação difícil de mudar. Um novo livro desmistifica a radioatividade e aponta as vantagens e desvantagens de seu uso. Foram mais de cem mil mortos imediatamente após a explosão das bombas nucleares em Hiroshima e Nagasaki, em agosto de 1945. Ironicamente, as mesmas propriedades do átomo capazes de causar tamanha destruição também podiam salvar vidas se empregadas no tratamento de câncer. A radioterapia, o exame de raios-X e o marca-passo artificial são exemplos de aplicações pacíficas da radioatividade. Para muitos, no entanto, a função da energia nuclear se resume a dizimar vidas. O temor suscitado pelos cogumelos atômicos se espalhou pelo mundo e ecoa até hoje devido à falta de informações precisas sobre o tema.

O risco de acidentes e a destinação do lixo nuclear são tratados de forma esclarecedora, ao se destacarem as aplicações da tecnologia nuclear na medicina molecular, na agricultura, na indústria e na datação de artefatos na arqueologia, e tudo que envolve a geração de energia nas usinas nucleares, como alternativa à queima de combustíveis fósseis das usinas termelétricas de gás e carvão e ao impacto socioambiental das hidrelétricas. Os fantasmas associados às usinas nucleares – o risco de acidentes e a destinação do lixo nuclear – são tratados de forma esclarecedora pelos pesquisadores sobre a radioatividade. (VENTURA, 2017);

A
O radionuclídeo césio-137, ao emitir partículas β e γ, produz um radioisótopo do iodo.
B
A radioatividade não apresenta benefícios, pois em reações nucleares se formam elementos tóxicos.
C
As sequelas da radioatividade ocorreram apenas por conta da grande energia liberada após a fissão nuclear.
D
Reações, como as que produziram a bomba atômica, envolvem apenas a região de menor massa em um átomo. 
E
A partir da bomba atômica, são geradas radiações ionizantes, que podem favorecer a formação de espécies que alteram o DNA de células sadias.