Questõessobre Radioatividade: Reações de Fissão e Fusão Nuclear, Desintegração Radioativa e Radioisótopos.

1
1
Foram encontradas 193 questões
07d863bb-b6
UECE 2009 - Química - Radioatividade: Reações de Fissão e Fusão Nuclear, Desintegração Radioativa e Radioisótopos., Transformações Químicas: elementos químicos, tabela periódica e reações químicas, Transformações Químicas e Energia, Transformações Químicas

O programa Fantástico (04.10.2009) da Rede Globo noticiou com grande estardalhaço: “Matéria para fabricar bomba atômica é vendida no Amapá”. A notícia se referia à Torianita, um mineral composto por óxido de tório, contendo hélio e os óxidos de urânio, lantânio, cério , praseodímio e neodímio. Da leitura das informações acima e também a partir de seus conhecimentos, assinale a única alternativa verdadeira:

A
a bomba de urânio produz uma grande quantidade de energia através de uma fusão nuclear apresentando múltiplas reações em cadeia.
B
lantânio e cério são metais de transição simples localizados no bloco d da tabela periódica.
C
o hélio e o tório são gases altamente reativos e de grande poder de contaminação.
D
Os elétrons diferenciais do praseodímio e do neodímio estão localizados na antepenúltima camada dos respectivos átomos.
7ffcb469-b7
UECE 2010 - Química - Radioatividade: Reações de Fissão e Fusão Nuclear, Desintegração Radioativa e Radioisótopos., Transformações Químicas: elementos químicos, tabela periódica e reações químicas, Transformações Químicas e Energia, Transformações Químicas, Eletroquímica: Oxirredução, Potenciais Padrão de Redução, Pilha, Eletrólise e Leis de Faraday.

Na virada do ano, os austríacos derretem um pouco de chumbo, que se funde a 327 ºC, e assim que o relógio soa zero hora, derramam o metal num copo com água. A figura formada pelo chumbo resfriado funciona como uma “bola de cristal” – a partir do formato que a figura assume, os “videntes” tentam adivinhar o futuro.

Com relação a esse metal ou a um de seus compostos, pode-se afirmar corretamente que

Dados que podem ser utilizados na resolução da prova de química

         Elemento      Número atômico          Massa atômica
                H                         1                                   1,0
                C                         6                                 12,0
                N                         7                                 14,0
                O                         8                                 16,0
                Na                      11                                23,0
                S                        16                                32,0
                Cl                       17                                35,5
                Mn                     25                                55,0
                Pb                      82                              207,0 
A
por se tratar de um metal radioativo é usado em chapas de raios-X na emissão de raios α (alfa).
B
os 4 números quânticos do elétron de valência e mais energético do chumbo em sua distribuição eletrônica no estado fundamental são: n = 6, l = 1, ml = + 1, ms = + ½.
C
na reação: 2MnO(s) + 5PbO2(s) + 8H+(aq) → 5Pb2+(aq) + 2MnO4(aq) + 4H2O(l), o óxido de chumbo atua como agente oxidante.
D
é o metal usado no cátodo (polo negativo) em bateria de 12V dos automóveis, cuja semi-reação é: Pb(s) + SO42–(aq) → PbSO4(s) + 2e .
cea81e91-b0
FATEC 2010 - Química - Radioatividade: Reações de Fissão e Fusão Nuclear, Desintegração Radioativa e Radioisótopos., Transformações Químicas e Energia

O actínio-225 é obtido artificialmente e tem tempo de meia-vida igual a 10 dias. Isso significa que, a cada 10 dias, a quantidade dessa espécie radioativa em uma amostra cai à metade. Sendo assim, nanobombas contendo uma quantidade x de actínio-225, após 10 dias, passam a conter uma quantidade x/2, após mais 10 dias, passa a conter x/4 e assim por diante.

Entre os gráficos representados abaixo, o que mostra a variação da atividade radioativa do actínio-225 em função do tempo, está na alternativa:

Considere o texto para responder a questão.

Entre as ideias mais excitantes em nanotecnologia está o desenvolvimento de sistemas moleculares inteligentes, capazes de reconhecer proteínas específicas em vírus, como o da AIDS, e interferir na sua capacidade de reprodução. Investimentos nesse sentido já estão sendo feitos pela empresa C-Sixty (C60 = fulereno), em Houston, com previsões bastante otimistas que, se concretizadas, conferirão um papel importante à nanotecnologia molecular no combate à AIDS.
Por meio do encapsulamento de materiais radioativos contendo actínio-225 e proteínas de reconhecimento, têm sido construídas verdadeiras nanobombas capazes de se ligar a células cancerosas e realizar sua destruição. Pesquisas realizadas no Texas mostraram que as cobaias tratadas com as nanocápsulas sobreviveram cerca de 300 dias em comparação com os 43 dias do grupo não tratado.

(TOMA, H.E. O mundo nanométrico: a dimensão do novo século. São Paulo: Oficina de Textos, 2004. p.39. Adaptado.)
A

B

C

D

E

c13835c0-b6
UEPB 2010 - Química - Radioatividade: Reações de Fissão e Fusão Nuclear, Desintegração Radioativa e Radioisótopos., Transformações Químicas e Energia

O Brasil, querendo assumir uma projeção no cenário diplomático internacional, juntamente com a Turquia, fez um acordo com o Irã sobre o enriquecimento de Urânio. De fato, o processo de enriquecimento de Urânio significa aumentar o teor do Urânio-235, utilizado em fissão nuclear. Sabendo que as proporções dos isótopos naturais do Urânio são: 99,27 % de Urânio-238, 0,72 % de Urânio-235 e 0,0055 % de Urânio-234, qual a Massa Molar do Urânio enriquecido se as quantidades forem 70 % de Urânio-238 e 30 % de Urânio-235?

Leia o texto abaixo e responda a questão, associada aos elementos químicos Rádio, Cúrio, Polônio e Urânio.

Texto III:

A Organização das Nações Unidas (ONU) instituiu 2011 como o Ano Internacional da Química, para conscientizar o público sobre as contribuições dessa ciência ao bem-estar da humanidade, coincidindo com o centenário do recebimento do Prêmio Nobel de Química por Marie Curie. O prêmio recebido pela pesquisadora polaca teve como finalidade homenageá-la pela descoberta dos elementos químicos Polônio (Po) e Rádio (Ra). Na verdade, este foi o segundo prêmio Nobel recebido, sendo o primeiro em Física, em 1903, pelas descobertas no campo da radioatividade. Marie Curie, assim, se tornou a primeira pessoa a receber dois prêmios Nobel. Como outra homenagem, desta vez post mortem, os restos mortais de Marie Curie foram transladados em 1995 para o Panteão de Paris, local onde estão as maiores personalidades da França, em todos os tempos. Além disso, o elemento de número atômico 96 recebeu o nome Cúrio (Cm) em homenagem ao casal Curie, Marie e seu marido Pierre.
A
237,1 g/mol
B
238,03 g/mol
C
237,1 u.m.a.
D
238,03 u.m.a.
E
236,5 g/mol
c1297ee3-b6
UEPB 2010 - Química - Radioatividade: Reações de Fissão e Fusão Nuclear, Desintegração Radioativa e Radioisótopos., Transformações Químicas e Energia

Sabendo que o tempo de meia-vida para o Polônio é de 138,4 dias, qual o tempo mínimo em que restará 1/16 da quantidade original de Polônio em uma amostra?

Leia o texto abaixo e responda a questão, associada aos elementos químicos Rádio, Cúrio, Polônio e Urânio.

Texto III:

A Organização das Nações Unidas (ONU) instituiu 2011 como o Ano Internacional da Química, para conscientizar o público sobre as contribuições dessa ciência ao bem-estar da humanidade, coincidindo com o centenário do recebimento do Prêmio Nobel de Química por Marie Curie. O prêmio recebido pela pesquisadora polaca teve como finalidade homenageá-la pela descoberta dos elementos químicos Polônio (Po) e Rádio (Ra). Na verdade, este foi o segundo prêmio Nobel recebido, sendo o primeiro em Física, em 1903, pelas descobertas no campo da radioatividade. Marie Curie, assim, se tornou a primeira pessoa a receber dois prêmios Nobel. Como outra homenagem, desta vez post mortem, os restos mortais de Marie Curie foram transladados em 1995 para o Panteão de Paris, local onde estão as maiores personalidades da França, em todos os tempos. Além disso, o elemento de número atômico 96 recebeu o nome Cúrio (Cm) em homenagem ao casal Curie, Marie e seu marido Pierre.
A
553,6 dias
B
2214,4 dias
C
1107,2 dias
D
276,8 dias
E
4428,8 dias
c11444fd-b6
UEPB 2010 - Química - Radioatividade: Reações de Fissão e Fusão Nuclear, Desintegração Radioativa e Radioisótopos., Transformações Químicas e Energia

Átomos do elemento Rádio são encontrados em um mineral denominado pechblenda (Óxido de Urânio), devido ao decaimento radioativo do Urânio. Qual das alternativas abaixo apresenta as radiações emitidas pelo Urânio-234 para obter o Rádio-226?

Leia o texto abaixo e responda a questão, associada aos elementos químicos Rádio, Cúrio, Polônio e Urânio.

Texto III:

A Organização das Nações Unidas (ONU) instituiu 2011 como o Ano Internacional da Química, para conscientizar o público sobre as contribuições dessa ciência ao bem-estar da humanidade, coincidindo com o centenário do recebimento do Prêmio Nobel de Química por Marie Curie. O prêmio recebido pela pesquisadora polaca teve como finalidade homenageá-la pela descoberta dos elementos químicos Polônio (Po) e Rádio (Ra). Na verdade, este foi o segundo prêmio Nobel recebido, sendo o primeiro em Física, em 1903, pelas descobertas no campo da radioatividade. Marie Curie, assim, se tornou a primeira pessoa a receber dois prêmios Nobel. Como outra homenagem, desta vez post mortem, os restos mortais de Marie Curie foram transladados em 1995 para o Panteão de Paris, local onde estão as maiores personalidades da França, em todos os tempos. Além disso, o elemento de número atômico 96 recebeu o nome Cúrio (Cm) em homenagem ao casal Curie, Marie e seu marido Pierre.
A
α, β
B
β, α
C
α, α
D
β, β
E
γ, γ
70cb87b7-b6
FGV 2016 - Química - Radioatividade: Reações de Fissão e Fusão Nuclear, Desintegração Radioativa e Radioisótopos., Transformações Químicas e Energia

O produto do decaimento do radioisótopo usado na radioterapia inovadora com ingestão de microesferas é o

Utilize o texto para responder a questão.

    Uma inovadora radioterapia para tumores de fígado tem sido empregada nos últimos anos por meio da ingestão, pelo paciente, de microesferas do ácido 2-hidroxipropanoico, contendo o radioisótopo hólmio-166. Este radioisótopo é obtido pelo isótopo natural e estável hólmio-165 irradiado em um reator nuclear.
    Com a ingestão das microesferas, o paciente recebe radiação gama e beta, que são emitidas pelo radioisótopo 166Ho, e o crescimento das células tumorais é desacelerado.

(COSTA, R.F. Desenvolvimento de métodos e preparação de microesferas de polímero e resinas marcadas com Hólmio-166. Dissertação de mestrado. Disponível em: http://www.teses.usp.br/. Adaptado)
A
érbio-166.
B
érbio-165.
C
hólmio-165.
D
disprósio-165.
E
disprósio-166.
9b2dff09-b6
IF-GO 2011 - Química - Radioatividade: Reações de Fissão e Fusão Nuclear, Desintegração Radioativa e Radioisótopos., Transformações Químicas e Energia

Nas reações nucleares, os núcleos sofrem alterações que envolvem grandes quantidades de energia, sendo estas muito maiores do que as envolvidas em reações químicas. A seguir, tem-se duas equações que representam duas reações nucleares:

Equação 1

Equação 2

Em relação às equações, assinale a alternativa incorreta:

A
A equação química 1 representa uma fusão química nuclear.
B
A equação química 2 representa uma fissão nuclear.
C
O número de massa de Y é 86.
D
Na equação 1, Z representa um próton.
E
O núcleo de urânio representado na equação 2 tem 143 nêutrons.
7c35c915-b6
IF-GO 2010 - Química - Radioatividade: Reações de Fissão e Fusão Nuclear, Desintegração Radioativa e Radioisótopos., Transformações Químicas e Energia

O isótopo 90Sr é um dos radioisótopos mais perigosos espalhados pelo acidente de Chernobyl porque pode substituir o cálcio em nossos ossos. Sua meia-vida é de, aproximadamente, 28 anos. Para que 1,0 g desse isótopo se reduza a 125,0 mg, deverão transcorrer:

A
28 anos
B
42 anos
C
56 anos
D
70 anos
E
84 anos
fa36ce8c-b6
IF-GO 2010 - Química - Radioatividade: Reações de Fissão e Fusão Nuclear, Desintegração Radioativa e Radioisótopos., Transformações Químicas e Energia

Há pouco mais de 100 anos, Ernest Rutherford descobriu que havia dois tipos de radiação, que chamou de α (Alfa) e β (Beta). Com relação a essas partículas, é correto afirmar que:

A
As partículas β são constituídas por 2 prótons e 2 nêutrons.
B
As partículas α são constituídas por 2 prótons e 2 elétrons.
C
As partículas β são elétrons emitidos pelo núcleo de um átomo instável.
D
As partículas α são constituídas apenas por 2 prótons.
E
As partículas β são constituídas por 2 elétrons, 2 prótons e 2 nêutrons.
aad25128-b4
UEFS 2010 - Química - Radioatividade: Reações de Fissão e Fusão Nuclear, Desintegração Radioativa e Radioisótopos., Transformações Químicas e Energia

O Irã iniciou, em fevereiro de 2010, a produção de urânio enriquecido a 20%, na usina atômica de Natarz, anunciou o vice-presidente da república islâmica.

A partir da análise dessas informações, é correto afirmar:

A
A proposta nuclear de enriquecimento do urânio, do Irã, tem finalidades pacíficas.
B
O urânio enriquecido é utilizado como combustível porque reage com oxigênio e produz energia.
C
O urânio 235 e o 238 possuem o mesmo número de nêutrons no núcleo.
D
As massas molares dos fluoretos de urânio 235UF6 e 238UF6 são iguais.
E
A energia nuclear é proveniente de fonte de energia não renovável.
18ded0a9-b2
UNEB 2017 - Química - Radioatividade: Reações de Fissão e Fusão Nuclear, Desintegração Radioativa e Radioisótopos., Transformações Químicas e Energia

Foram mais de cem mil mortos imediatamente após a explosão das bombas nucleares em Hiroshima e Nagasaki em agosto de 1945. Noventa por cento deles eram civis. Era o fim da Segunda Guerra Mundial, mas o sofrimento de milhares de pessoas não terminaria em 1945. Gerações depois, as sequelas da radioatividade ainda eram sentidas, como mostram os altos índices de câncer de mama nas meninas nascidas em Hiroshima, no pós-guerra.
Com base nos textos e nos conhecimentos sobre radioatividade, é correto afirmar


Quem tem medo da radioatividade?

Como herança da destruição causada pela explosão das bombas atômicas ao fim da Segunda Guerra, a energia nuclear ganhou uma reputação difícil de mudar. Um novo livro desmistifica a radioatividade e aponta as vantagens e desvantagens de seu uso. Foram mais de cem mil mortos imediatamente após a explosão das bombas nucleares em Hiroshima e Nagasaki, em agosto de 1945. Ironicamente, as mesmas propriedades do átomo capazes de causar tamanha destruição também podiam salvar vidas se empregadas no tratamento de câncer. A radioterapia, o exame de raios-X e o marca-passo artificial são exemplos de aplicações pacíficas da radioatividade. Para muitos, no entanto, a função da energia nuclear se resume a dizimar vidas. O temor suscitado pelos cogumelos atômicos se espalhou pelo mundo e ecoa até hoje devido à falta de informações precisas sobre o tema.

O risco de acidentes e a destinação do lixo nuclear são tratados de forma esclarecedora, ao se destacarem as aplicações da tecnologia nuclear na medicina molecular, na agricultura, na indústria e na datação de artefatos na arqueologia, e tudo que envolve a geração de energia nas usinas nucleares, como alternativa à queima de combustíveis fósseis das usinas termelétricas de gás e carvão e ao impacto socioambiental das hidrelétricas. Os fantasmas associados às usinas nucleares – o risco de acidentes e a destinação do lixo nuclear – são tratados de forma esclarecedora pelos pesquisadores sobre a radioatividade. (VENTURA, 2017);

A
O radionuclídeo césio-137, ao emitir partículas β e γ, produz um radioisótopo do iodo.
B
A radioatividade não apresenta benefícios, pois em reações nucleares se formam elementos tóxicos.
C
As sequelas da radioatividade ocorreram apenas por conta da grande energia liberada após a fissão nuclear.
D
Reações, como as que produziram a bomba atômica, envolvem apenas a região de menor massa em um átomo. 
E
A partir da bomba atômica, são geradas radiações ionizantes, que podem favorecer a formação de espécies que alteram o DNA de células sadias.
18d87b15-b2
UNEB 2017 - Química - Radioatividade: Reações de Fissão e Fusão Nuclear, Desintegração Radioativa e Radioisótopos., Transformações Químicas e Energia

A radioatividade é bastante utilizada na medicina, através dos exames de raio-X, cuja radiação atravessa os tecidos com o objetivo de mostrar internamente o corpo humano, e sua faixa de frequência encontra-se entre 2,4.1016Hz e 5,0.1019Hz.
Considerando-se um raio-X de frequência 4,2.1016Hz propagando-se em um meio em que seu comprimento de onda é igual a 0,2nm, é correto afirmar que a velocidade de propagação nesse meio, em 106 m/s, é igual a


Quem tem medo da radioatividade?

Como herança da destruição causada pela explosão das bombas atômicas ao fim da Segunda Guerra, a energia nuclear ganhou uma reputação difícil de mudar. Um novo livro desmistifica a radioatividade e aponta as vantagens e desvantagens de seu uso. Foram mais de cem mil mortos imediatamente após a explosão das bombas nucleares em Hiroshima e Nagasaki, em agosto de 1945. Ironicamente, as mesmas propriedades do átomo capazes de causar tamanha destruição também podiam salvar vidas se empregadas no tratamento de câncer. A radioterapia, o exame de raios-X e o marca-passo artificial são exemplos de aplicações pacíficas da radioatividade. Para muitos, no entanto, a função da energia nuclear se resume a dizimar vidas. O temor suscitado pelos cogumelos atômicos se espalhou pelo mundo e ecoa até hoje devido à falta de informações precisas sobre o tema.

O risco de acidentes e a destinação do lixo nuclear são tratados de forma esclarecedora, ao se destacarem as aplicações da tecnologia nuclear na medicina molecular, na agricultura, na indústria e na datação de artefatos na arqueologia, e tudo que envolve a geração de energia nas usinas nucleares, como alternativa à queima de combustíveis fósseis das usinas termelétricas de gás e carvão e ao impacto socioambiental das hidrelétricas. Os fantasmas associados às usinas nucleares – o risco de acidentes e a destinação do lixo nuclear – são tratados de forma esclarecedora pelos pesquisadores sobre a radioatividade. (VENTURA, 2017);

A
8,4
B
7,5
C
6,8
D
5,5
E
4,0
bd37740b-b1
FATEC 2017 - Química - Radioatividade: Reações de Fissão e Fusão Nuclear, Desintegração Radioativa e Radioisótopos., Transformações Químicas e Energia

Leia o texto.

Um dos piores acidentes nucleares de todos os tempos completa 30 anos em 2016. Na madrugada do dia 25 de abril, o reator número 4 da Estação Nuclear de Chernobyl explodiu, liberando uma grande quantidade de Sr–90 no meio ambiente que persiste até hoje em locais próximos ao acidente. Isso se deve ao período de meia-vida do Sr–90, que é de aproximadamente 28 anos.
O Sr–90 é um beta emissor, ou seja, emite uma partícula beta, transformando-se em Y–90. A contaminação pelo Y–90 representa um sério risco à saúde humana, pois esse elemento substitui com facilidade o cálcio dos ossos, dificultando a sua eliminação pelo corpo humano.
<http://tinyurl.com/jzljzwc> Acesso em: 30.08.2016. Adaptado.

Em 2016, em relação à quantidade de Sr–90 liberada no acidente, a quantidade de Sr–90 que se transformou em Y–90 foi, aproximadamente, de

A
1/8
B
1/6
C
1/5
D
1/4
E
1/2
bcfc578d-b1
FATEC 2017 - Química - Radioatividade: Reações de Fissão e Fusão Nuclear, Desintegração Radioativa e Radioisótopos., Transformações Químicas e Energia

Leia o texto.

   Lise Meitner, nascida na Áustria em 1878 e doutora em Física pela Universidade de Viena, começou a trabalhar, em 1906, com um campo novo e recente da época: a radioquímica. Meitner fez trabalhos significativos sobre os elementos radioativos (descobriu o protactínio, Pa, elemento 91), porém sua maior contribuição à ciência do século XX foi a explicação do processo de fissão nuclear. A fissão nuclear é de extrema importância para o desenvolvimento de usinas nucleares e bombas atômicas, pois libera grandes quantidades de energia. Neste processo, um núcleo de U–235 (número atômico 92) é bombardeado por um nêutron, formando dois núcleos menores, sendo um deles o Ba–141 (número atômico 56) e três nêutrons.
   Embora Meitner não tenha recebido o prêmio Nobel, um de seus colaboradores disse: “Lise Meitner deve ser honrada como a principal mulher cientista deste século”.

Fonte dos dados: KOTZ, J. e TREICHEL, P. Química e Reações Químicas. Rio de Janeiro. Editora LTC,1998. Adaptado.
FRANCO, Dalton. Química, Cotidiano e Transformações. São Paulo. Editora FTD,2015. Adaptado.

O número atômico do outro núcleo formado na fissão nuclear mencionada no texto é

A
34
B
35
C
36
D
37
E
38
02fc4565-b0
UNICENTRO 2010 - Química - Radioatividade: Reações de Fissão e Fusão Nuclear, Desintegração Radioativa e Radioisótopos., Transformações Químicas e Energia

O desastre radioativo acontecido em Goiânia (césio-137) foi um grave episódio de contaminação por radioatividade ocorrida no Brasil. A contaminação iniciou-se em setembro de 2007, quando um aparelho utilizado em terapia radioativa, de um hospital abandonado, foi encontrada na zona central de Goiânia. A meia-vida do césio-137 é cerca de 16 anos. Partindo-se de uma amostra de 137g, após quantos anos restarão 6,25% de Cs-137?

A
4 anos.
B
8 anos.
C
16 anos.
D
32 anos.
E
64 anos.
ccc75207-b0
UNICENTRO 2010 - Química - Radioatividade: Reações de Fissão e Fusão Nuclear, Desintegração Radioativa e Radioisótopos., Transformações Químicas e Energia

O frâncio foi descoberto em 1935 pela química francesa Marguerita Perey, 1901-1975, a partir dos trabalhos que desenvolveu com Marie Curie. O frâncio 233, com meia vida de 22 minutos, se desintegra de acordo com a equação nuclear.


A partir dessas informações, é correto afirmar:

A
O frâncio 233 possui 10 prótons a mais que o seu isótopo 223.
B
A amostra de 1,0g de perde 87,5% da atividade radioativa após uma hora e seis minutos.
C
O frâncio 233, ao perder uma partícula α, aumenta em duas unidades o seu número atômico.
D
O radionuclídeo X, na equação nuclear, representa um isótopo do elemento químico actínio.
E
O frâncio 233, ao reagir com água, dá origem à base fraca FrOH, que não possui atividade radioativa.
2eea8dd9-af
UECE 2013 - Química - Radioatividade: Reações de Fissão e Fusão Nuclear, Desintegração Radioativa e Radioisótopos., Transformações Químicas: elementos químicos, tabela periódica e reações químicas, Transformações Químicas e Energia, Transformações Químicas

Segundo artigo de Brianna Rego, publicado no site da Scientific American Brasil, a indústria do tabaco sabe há décadas como remover isótopo perigoso (polônio) dos cigarros, mas se omite [...] No Brasil, mortes por tabagismo somam 552 vítimas a cada dia. O fumo do cigarro contém, entre outras substâncias, hidrocarbonetos policíclicos aromáticos, nitrosaminas, chumbo, arsênio, cádmio e polônio. Sobre essas substâncias, pode-se afirmar corretamente que

DADOS QUE PODEM SER USADOS NESTA PROVA:

ELEMENTO QUÍMICO   ÚMERO ATÔMICO     MASSA ATÔMICA
                H                                     1                               1,0
                C                                     6                              12,0
                N                                     7                              14,0
                O                                     8                              16,0
                S                                     16                             32,0
                F                                      9                              19,0
                Na                                   11                              23,0
                Al                                    13                              27,0
                P                                     15                             31,0
                Cl                                    17                                 35,5
                Ca                                   20                                 40,0
                K                                     19                                  39,0
                Cr                                    24                                 52,0
                Mn                                   25                                 55,0
                Fe                                    26                                 56,0
                Cu                                    29                                63,5
                As                                    33                               75,04
                Ag                                    47                               108,0
                Cd                                    48                               112,4
                Hg                                    80                               200,6
                Pb                                    82                               207,2
                Po                                    84                               209,0 
A
arsênio, chumbo, cádmio e polônio são conhecidos como metais pesados.
B
o polônio é um metal radioativo que emite partículas alfa.
C
o cádmio é considerado um elemento representativo na tabela periódica.
D
o chumbo é um elemento de transição interna.
37e67828-b0
UFPR 2011, UFPR 2011, UFPR 2011, UFPR 2011, UFPR 2011 - Química - Radioatividade: Reações de Fissão e Fusão Nuclear, Desintegração Radioativa e Radioisótopos., Transformações Químicas e Energia

Em 2011 celebramos o Ano Internacional da Química. Além disso, 2011 é também o ano do centenário do recebimento do Prêmio Nobel de Química por Marie Curie, que foi a primeira cientista a receber dois Prêmios Nobel, o primeiro em 1903, em Física, devido às suas contribuições para as pesquisas em radioatividade, e o segundo em 1911, pela descoberta dos elementos rádio e polônio. O polônio não possui isótopos estáveis, todos são radioativos, dos quais apenas o 210Po ocorre naturalmente, sendo gerado por meio da série de decaimento do rádio. A seguir são ilustrados dois trechos da série de decaimento do rádio:



Com base nas informações fornecidas, considere as seguintes afirmativas:


1. A partícula α possui número de massa igual a 4.

2. Para converter 214Pb em 210Pb, conectando os dois trechos da série, basta a emissão de uma partícula α.

3. Uma amostra de 210Po será totalmente convertida em 206Pb após 276,76 dias.

4. No decaimento β , o número de massa é conservado, pois um nêutron é convertido em um próton.


Assinale a alternativa correta.

A
Somente a afirmativa 3 é verdadeira.
B
Somente as afirmativas 1 e 2 são verdadeiras.
C
Somente as afirmativas 1, 2 e 4 são verdadeiras.
D
Somente as afirmativas 2, 3 e 4 são verdadeiras.
E
Somente as afirmativas 1 e 4 são verdadeiras.
9d5562b9-af
PUC - RJ 2014 - Química - Radioatividade: Reações de Fissão e Fusão Nuclear, Desintegração Radioativa e Radioisótopos., Transformações Químicas e Energia

Num processo de fissão nuclear, um nêutron colidiu com o núcleo de um isótopo do urânio levando à formação de dois núcleos menores e liberação de nêutrons que produziram reações em cadeia com liberação de grande quantidade de energia. Uma das possíveis reações nucleares nesse processo é representada por:


O produto X, formado na fissão nuclear indicada acima, é um isótopo do elemento químico:

A
Tório
B
Xenônio
C
Chumbo
D
Lantânio
E
Radônio