Questõesde UEFS 2011 sobre Matemática

1
1
1
Foram encontradas 71 questões
87c19bc4-b4
UEFS 2011 - Matemática - Trigonometria, Funções Trigonométricas e Funções Trigonométricas Inversas


As telhas onduladas de amianto, bastante populares, vêm tendo seu uso proibido em diversos municípios brasileiros, por ser um material cancerígeno e por também poder causar doenças respiratórias. Para substituí-las, podem ser usadas as chamadas ecotelhas — telhas onduladas produzidas a partir da reciclagem de material plástico, como, por exemplo, aparas de tubos de creme dental.

As ecotelhas têm elevada resistência mecânica, bem como à ação dos raios ultravioleta e infravermelho, além de serem econômicas, são 100% impermeáveis.

Supondo-se que a curva representativa de uma secção transversal de uma telha ondulada, como a da figura, seja definida por parte da função real f(x) = 1 − 2sen (x/2 - 5π/3) é correto afirmar que o conjunto-imagem e o período de f(x) são, respectivamente,

A
[-1, 3] e 4π.
B
[-3, 1] e 4π.
C
[-1, 3] e 3π.
D
[-1, 1] e 2π.
E
[-3, 3] e 2π.
87be3911-b4
UEFS 2011 - Matemática - Números Complexos

Diz-se que um número inteiro positivo x é um número perfeito, quando é a soma de todos os seus divisores positivos, exceto ele próprio. Por exemplo, 28 é um número perfeito, pois 28 = 1 + 2 + 4 + 7 + 14. A última proposição do nono livro dos Elementos de Euclides prova que se n é um inteiro positivo, tal que 2n −1 é um número primo, então 2n–1(2n −1) é um número perfeito. Euler provou que todo número perfeito par tem essa forma, mas ainda não são conhecidos números perfeitos ímpares.

O menor elemento do conjunto P = {n ∈ Z*/ 2n−1(2n −1) > 1128}, para o qual 2n–1(2n −1) é um número perfeito, é

A
5
B
6
C
7
D
8
E
9
87bac047-b4
UEFS 2011 - Matemática - Funções, Equação Logarítmica

O conjunto-solução da inequação log(3 - |x|/2) (2) > log(3 - |x|/2) (4/3) é um subconjunto de

A
]– ∞, –5]
B
]–5, 5[
C
]−3, 2[
D
]−2, 3[
E
]5 + ∞[
87b66f97-b4
UEFS 2011 - Matemática - Funções, Função de 2º Grau

Considerem-se os valores registrados na tabela T, obtidos em certo experimento, que foram relacionados por meio de funções reais, bijetoras, f e g.

T:
X f(x) g(x) f(g(x))
1 3 3 b
2 5 1 3
3 6 a 5


Analisando-se as informações contidas em T, pode-se concluir que a relação entre a e b é expressa por

A
b = a − 4
B
b = a − 2
C
b = a
D
b = a + 2
E
b = a + 4
87af374a-b4
UEFS 2011 - Matemática - Análise Combinatória em Matemática

Ao se arrumar para ir ao cinema, uma pessoa se vestiu na seguinte sequência — primeiro pôs uma calça jeans, em seguida calçou o sapato no pé direito e, antes de calçar o sapato no pé esquerdo, vestiu uma camisa e concluiu colocando uma jaqueta.

Considerando-se que a pessoa só pode pôr a jaqueta após a camisa e calçar cada um dos sapatos, depois de vestir a calça, é possível que ela se vista e calce seguindo um número máximo de sequências distintas igual a

A
8
B
12
C
20
D
36
E
48
87abff7b-b4
UEFS 2011 - Matemática - Polígonos, Geometria Plana, Números Complexos

O número complexo 1 + i é raiz do polinômio P(x) = x4 + 3x3 + px2 − 2x + q, com p,q ∈R.

Então, a soma das raízes reais de P(x) é

A
− 5
B
- 3
C
2
D
3
E
5
87a8bbc5-b4
UEFS 2011 - Matemática - Análise Combinatória em Matemática

Um jornal diário incluiu em cada edição de domingo, durante um certo período, um fascículo, contendo dois capítulos distintos de um curso de Informática, numerados de forma consecutiva, a partir do número 1.

Após a publicação de todos os capítulos do curso, uma pessoa constatou, em sua coleção, a falta de apenas o oitavo fascículo, de modo que a soma dos números dos capítulos contidos nos demais fascículos era igual a 320.

Nessas condições, pode-se afirmar que o número total de capítulos publicados está entre

A
12 e 15
B
15 e 18
C
18 e 21
D
21 e 24
E
24 e 27
87a54405-b4
UEFS 2011 - Matemática - Circunferências e Círculos, Geometria Plana, Números Complexos

Considerem-se, no plano complexo representado na figura, os pontos P, Q e R pertencentes a uma circunferência de centro na origem.



Sendo P o afixo de z = 2 - 3/2i e QR, um arco medindo 5µ/12, pode-se afirmar que o ponto R é afixo do número complexo que pode ser representado, algebricamente, por

A
5/4 (-1 + i√3)
B
5√2/4 (-1 + i√3)
C
5/4 (-√3 + i)
D
7/4 (-√3 + i)
E
5√2/4 (-1 + i)
87a12681-b4
UEFS 2011 - Matemática - Aritmética e Problemas, Porcentagem

Determinada quantidade de certa fruta era vendida por um feirante ao preço de R$3,60. Como um freguês reclamou que as frutas estavam muito pequenas, o feirante concordou em acrescentar duas frutas à quantidade inicial, mantendo o preço, de modo que uma dúzia da fruta passou a custar R$5,40, valor inferior ao cobrado anteriormente.

Assim, pode-se afirmar que, na negociação, o freguês conseguiu um desconto percentual no preço da fruta de

A
15%
B
18%
C
25%
D
28%
E
35%
879cdd56-b4
UEFS 2011 - Matemática - Sistema de Unidade de Medidas, Aritmética e Problemas, Regra de Três

X gasta 12 minutos para ir andando de sua casa até um Shopping.

Considerando-se que cada passo de X tem 60% do comprimento de cada passo de seu amigo Y, e ele demora tanto tempo para dar 8 passos quanto Y para dar 6 passos, pode-se estimar o tempo que Y demora no percurso da casa de X até o Shopping, em

A
7min17seg.
B
8min40seg.
C
9min.
D
9min36seg.
E
10min.
8799f1f3-b4
UEFS 2011 - Matemática - Análise de Tabelas e Gráficos, Áreas e Perímetros, Polígonos, Geometria Plana

Em 1772, o matemático Johann Titus e o astrônomo Johann Bode descobriram uma sequência matemática nas distâncias dos planetas a partir do Sol — essa sequência previa a possibilidade de um planeta orbitar entre Marte e Júpiter a 2,8 UA (unidades astronômicas) do Sol. Em 1801, o astrônomo italiano Giuseppi Piazzi descobriu um corpo indistinto nessa distância, ao qual ele deu o nome de Ceres, bem como outros corpos pequenos, nessa mesma adjacência, que foram chamados de asteroides ou planetas anões.

Considerando-se que as distâncias dos planetas, a partir do Sol, são proporcionais aos termos da sequência, de acordo com a tabela, pode-se afirmar que x é o quadrado de

A
11
B
12
C
13
D
14
E
15