Questõesde Unichristus 2016

1
1
Foram encontradas 68 questões
eb6850bc-ff
Unichristus 2016 - Física - Cargas Elétricas e Eletrização, Eletrostática e Lei de Coulomb. Força Elétrica., Eletricidade

A integridade da membrana plasmática é vital para que as células executem de forma eficiente suas funções. A membrana celular é uma estrutura composta por duas camadas lipídicas que separam o meio intracelular do extracelular. 


Disponível em:<http://cronodon.com/BioTech/Membranes.htm> .


Por ser uma estrutura em bicamada isolante e possuir a propriedade de separar soluções condutoras tanto do meio intra como do extracelular, a membrana plasmática é responsável pelas propriedades dielétricas das células e tem características capacitivas, demonstrando uma capacitância de 1 µF/cm2 .

OBS.:Considere a permissividade do vácuo como sendo 9 x 10–12 F/m e a constante dielétrica dos lipídios igual a 2.


Sobre o exposto acima, pode-se afirmar que a espessura d da membrana plasmática é, aproximadamente, igual a

A
1,8 ˑ 10–5 m
B
1,8 ˑ 10–9 m
C
1,8 ˑ 10–16 m
D
9 ˑ 10–16 m
E
9 ˑ 10–9 m
eb611a1b-ff
Unichristus 2016 - Física - Dinâmica, Leis de Newton

    O tênis é um esporte baseado na imprevisibilidade. A imprevisibilidade de duração do ponto, seleção do golpe, estratégia, tempo de jogo, clima e o oponente influenciam as demandas fisiológicas da modalidade. Ao contrário de outros esportes, o tênis não tem tempo limite para o seu término. Isso resulta na ocorrência de jogos que duram menos de uma hora e outros que duram mais de 5 horas. Portanto, essas variações requerem que o tenista de sucesso seja altamente treinado anaerobiamente para a realização das atividades durante o jogo e aerobiamente para melhorar a recuperação durante e após as partidas. Durante um saque, o impacto da raquete com a bola, de cerca de 60 g, dura em média 0,05 segundo.

Disponível em: <http://www.efdeportes.com/>. (Fonte modificada)


Numa partida, um tenista profissional saca uma bola com uma velocidade de 60 m/s. Assim, a força, em newtons, aplicada sobre a bola foi de

A
60 N.
B
72 N.
C
120 N.
D
144 N.
E
180 N.
eb5d2765-ff
Unichristus 2016 - Física - Dinâmica, Transformações Gasosas, Trabalho e Energia, Física Térmica - Termologia, Energia Mecânica e sua Conservação, 1ª Lei da Termodinâmica

Sabe-se que a temperatura típica do planeta Terra vale 293 K. Cálculos mostram que, para um planeta reter certo gás por bilhões de anos, a velocidade média de suas moléculas deve ser menor do que 1/6 da velocidade de escape do planeta. Sendo a velocidade de escape no planeta Terra de 11,2 km/s e a constante universal dos gases R = 8,31 J/mol ˑ K, pode-se concluir que a nossa atmosfera contém predominantemente


Dados: Massas Molares (MH = 2 g/mol e MO = 32 g/mol)

A
hidrogênio e não oxigênio em sua composição, pois a velocidade média das moléculas de hidrogênio é de, aproximadamente, 0,5 km/s e a velocidade média das moléculas de oxigênio é de, aproximadamente, 2 km/s.
B
oxigênio e não hidrogênio em sua composição, pois a velocidade média das moléculas de oxigênio é de, aproximadamente, 0,5 km/s e a velocidade média das moléculas de hidrogênio é de, aproximadamente, 2 km/s.
C
oxigênio e não hidrogênio em sua composição, pois a velocidade média das moléculas de oxigênio é de, aproximadamente, 2 km/s e a velocidade média das moléculas de hidrogênio é de, aproximadamente, 0,5 km/s.
D
oxigênio e não hidrogênio em sua composição, pois a velocidade média das moléculas de oxigênio é de, aproximadamente, 0,2 km/s e a velocidade média das moléculas de hidrogênio é de, aproximadamente, 4 km/s
E
oxigênio e não hidrogênio em sua composição, pois a velocidade média das moléculas de oxigênio é de, aproximadamente, 0,2 km/s e a velocidade média das moléculas de hidrogênio é de, aproximadamente, 4 km/s.
eb595ba5-ff
Unichristus 2016 - Física - Eletrodinâmica - Corrente Elétrica, Indução e Transformadores Elétricos, Cargas Elétricas e Eletrização, Magnetismo, Eletrostática e Lei de Coulomb. Força Elétrica., Eletricidade

Sempre quando temos uma diferença de potencial muito grande entre nuvens ou entre nuvens e terra, podemos ter uma descarga elétrica. É justamente a essa descarga elétrica que damos o nome de raio. Dentro das nuvens, ocorrem as chamadas correntes de convecção. Muitas vezes, essas correntes de ar são tão fortes que as colisões entre o granizo e os cristais de gelo dentro da nuvem eletrizam os cristais com carga positiva e o granizo com carga negativa.

Disponível em:<https://www.infoenem.com.br/> .


Caso essa eletrização seja muito alta, ocorre a indução de uma carga positiva na superfície da Terra, estabelecendo um campo elétrico. Assim, se o campo se tornar muito intenso,

A
poderá ser superada a rigidez dielétrica do ar, ocorrendo a descarga atmosférica – o raio.
B
poderá ser superada a rigidez condutora do ar, ocorrendo a descarga atmosférica – o raio.
C
poderá ser superada a permissividade magnética do ar, ocorrendo a descarga atmosférica – o raio.
D
poderá ser superada a permeabilidade magnética do ar, ocorrendo a descarga atmosférica – o raio.
E
poderá ser superada a resistividade elétrica do ar, ocorrendo a descarga atmosférica – o raio.
eb51508e-ff
Unichristus 2016 - Física - Dinâmica, Trabalho e Energia, Energia Mecânica e sua Conservação, Impulso e Quantidade de Movimento

Quando um objeto fica sujeito a uma força elástica, seu movimento recebe o nome de movimento harmônico simples. Uma das características desse movimento é que ele é periódico. Isso ocorre porque a partícula, desprezando o atrito, volta a uma certa posição a intervalos de tempo regulares. Esse intervalo de tempo é o período. Por exemplo, você perceberá que a partícula passará pelo centro na mesma direção a intervalos regulares. O período se relaciona com a massa e a constante elástica. Nota-se também que, nos pontos de maior velocidade, o deslocamento é pequeno e, onde o deslocamento é grande, a velocidade é pequena. Por exemplo, na origem (deslocamento igual a zero x = 0), a velocidade é máxima. Quando o deslocamento é máximo (atinge sua amplitude), a velocidade é nula.

Disponível em:<http://efisica.if.usp.br/mecanica/basico/elasticidade/massa_mola/>.


Considere dois sistemas massa-mola C e D cujas energias mecânicas são iguais. Sabendo que as constantes elásticas das molas se relacionam de forma que Kc = 2KD, pode-se afirmar que as amplitudes dos movimentos AC e AD guardam a relação matemática

A
AC = AD/4.
B
AC = 2–1/2 ˑ AD.
C
AC = AD.
D
AC = 4 ˑ AD.
E
AC = 21/2 ˑ AD.
eb555904-ff
Unichristus 2016 - Física - Eletrodinâmica - Corrente Elétrica, Resistores e Potência Elétrica, Eletricidade

TORRADEIRA ELÉTRICA


Hoje em dia, a torradeira é um aparelho comum em praticamente todas as cozinhas do mundo, não existindo melhor método de se transformar o pão numa deliciosa torrada. Ela é um sistema que transforma energia proveniente da rede elétrica em energia térmica, que transfere calor para o pão ser torrado. A resistência é a responsável pelo aquecimento da torradeira quando ela é conectada a uma fonte de energia elétrica (efeito joule). O elemento de aquecimento de uma torradeira costuma ser um fio feito de uma liga metálica, como níquel e cromo, que tem uma resistência maior do que a de um fio de cobre. Quando a torradeira é ligada, uma corrente flui através do fio, e a resistência faz que o fio se aqueça e fique com uma cor laranja-avermelhada, criando um fluxo de calor que aquece a superfície do pão.

Disponível em:<http://www.proac.uff.br/petroleo/sites/default/files/Relatorio_da_Sanduicheira.pdf> . Acesso: 24/09/2016


Considere uma torradeira de potência 600 W ligada a uma rede de 120 V. A resistividade da liga metálica é ρ = 1,5 10–6 Ω.m, e o diâmetro da secção transversal do fio vale 0,5 mm. Assim, o comprimento do condutor usado nesse modelo de torradeira seria de


Dado: π = 3

A
1 m.
B
1,5 m.
C
2,5 m.
D
3,0 m.
E
4,0 m.
eb4e1235-ff
Unichristus 2016 - Física - Queda Livre, Cinemática

DE GOTA EM GOTA


    É claro que é legal ver como seu filho se diverte quando se oferece para ajudar a lavar a calçada e, sem cerimônia, faz a água jorrar da mangueira. O problema é que, por mais que a intenção seja boa, o desperdício é grande. Só para se ter uma ideia, uma pessoa sozinha gasta, em média, 200 litros de água diariamente. Apenas 15 litros são o suficiente para viver, de acordo com o gerente de produção de água de Curitiba e Região Metropolitana da Sanepar, Paulo Raffo. “É matemático, quanto mais se gasta, menos vamos ter. A água do mundo não vai acabar, o perigo é acabar a água potável”, diz. Uma torneira pingando uma gota a cada 0,4 segundo representa mais de 250 litros de água desperdiçados em apenas um dia.

Disponível em:<http://www.gazetadopovo.com.br/viverbem/comportamento/de-gota-em-gota/>  (Fonte modificada) 


Considere que, ao se fechar a torneira, esta ficou gotejando a cada 0,4 segundos, conforme ilustra o texto anterior. Diante disso, considerando o momento em que a primeira gota se desprende da torneira com velocidade nula, quantas gotas estarão no ar quando a primeira atingir o solo que se encontra a uma distância da torneira de 1,0 metro na vertical?

Dado: g = 10m/s2 

A
Uma.
B
Duas.
C
Três.
D
Quatro.
E
Cinco.
eb49c728-ff
Unichristus 2016 - Física - Gravitação Universal, Força Gravitacional e Satélites

    Satélite é um pequeno corpo que gravita em torno de um astro maior no espaço. Os satélites podem ser naturais ou artificiais (feitos pelo homem). Com exceção de Mercúrio e Vênus, todos os planetas do Sistema Solar possuem satélites naturais, como a Terra tem a Lua, por exemplo. Os satélites artificiais são enviados para o espaço, em geral por foguetes, para coletar informações.

Disponível em: <http://escola.britannica.com.br/article/482459/satélite>


Os satélites não são motorizados, e a sua velocidade adquirida devido ao lançamento define a órbita que ele descreverá. Sendo M a massa da Terra, d a distância do satélite ao centro do planeta e G a constante de gravitação universal, pode-se afirmar que a velocidade orbital de um satélite V é 

A
(G.M)1/2 ˑ d2
B
(G.M)1/2 ˑ d–1/2
C
(G.M)2 ˑ d–1/2
D
G.M ˑ d2
E
(G.M.d)2