Questõesde UERJ sobre Transformações Químicas

1
1
1
Foram encontradas 44 questões
d3e9d62d-9c
UERJ 2017, UERJ 2017, UERJ 2017 - Química - Sistemas Gasosos - Lei, Teoria Cinética, Equação e Mistura dos Gases. Princípio de Avogadro., Transformações Químicas

Quatro balões esféricos são preenchidos isotermicamente com igual número de mols de um gás ideal. A temperatura do gás é a mesma nos balões, que apresentam as seguintes medidas de raio:



A pressão do gás é maior no balão de número:

A
I
B
II
C
III
D
IV
eb376442-6e
UERJ 2012 - Química - Sistemas Gasosos - Lei, Teoria Cinética, Equação e Mistura dos Gases. Princípio de Avogadro., Transformações Químicas

Dois balões idênticos são confeccionados com o mesmo material e apresentam volumes iguais. As massas de seus respectivos conteúdos, gás hélio e gás metano, também são iguais. Quando os balões são soltos, eles alcançam, com temperaturas internas idênticas, a mesma altura na atmosfera.

Admitindo-se comportamento ideal para os dois gases, a razão entre a pressão no interior do balão contendo hélio e a do balão contendo metano é igual a:

A
1
B
2
C
4
D
8
eb267905-6e
UERJ 2012 - Química - Teoria Atômica: átomos e sua estrutura - número atômico, número de massa, isótopos, massa atômica, Transformações Químicas

A descoberta dos isótopos foi de grande importância para o conhecimento da estrutura atômica da matéria.

Sabe-se, hoje, que os isótopos 54Fe e 56Fe têm, respectivamente, 28 e 30 nêutrons.

A razão entre as cargas elétricas dos núcleos dos isótopos 54Fe e 56Fe é igual a:

A
0,5
B
1,0
C
1,5
D
2,0
eb1ae7e3-6e
UERJ 2012 - Química - Transformações Químicas: elementos químicos, tabela periódica e reações químicas, Transformações Químicas

Em uma das primeiras classificações periódicas, os elementos químicos eram organizados em grupos de três, denominados tríades. Os elementos de cada tríade apresentam propriedades químicas semelhantes, e a massa atômica do elemento central equivale aproximadamente à média aritmética das massas atômicas dos outros dois. Observe as tríades a seguir:



Com base nos critérios desta classificação, a letra X corresponde ao seguinte elemento químico:

A
O
B
As
C
Se
D
Po
311eb03f-6a
UERJ 2017 - Química - Grandezas: massa, volume, mol, massa molar, constante de Avogadro e Estequiometria., Transformações Químicas: elementos químicos, tabela periódica e reações químicas, Fórmulas, Balanceamento e Leis ponderais das reações químicas, Transformações Químicas, Representação das transformações químicas

A hemoglobina é uma proteína de elevada massa molar, responsável pelo transporte de oxigênio na corrente sanguínea. Esse transporte pode ser representado pela equação química abaixo, em que HB corresponde à hemoglobina.



Em um experimento, constatou-se que 1 g de hemoglobina é capaz de transportar 2,24 x 10–4 L de oxigênio molecular com comportamento ideal, nas CNTP.

A massa molar, em g/mol, da hemoglobina utilizada no experimento é igual a:

A
1 x 105
B
2 x 105
C
3 x 105
D
4 x 105
1763bcd4-a5
UERJ 2016, UERJ 2016, UERJ 2016 - Química - Teoria Atômica: átomos e sua estrutura - número atômico, número de massa, isótopos, massa atômica, Transformações Químicas: elementos químicos, tabela periódica e reações químicas, Transformações Químicas

Recentemente, quatro novos elementos químicos foram incorporados à tabela de classificação periódica, sendo representados pelos símbolos Uut, Uup, Uus e Uuo.
Dentre esses elementos, aquele que apresenta maior energia de ionização é:

A
Uut
B
Uup
C
Uus
D
Uuo
04cf408d-60
UERJ 2011 - Química - Grandezas: massa, volume, mol, massa molar, constante de Avogadro e Estequiometria., Sistemas Gasosos - Lei, Teoria Cinética, Equação e Mistura dos Gases. Princípio de Avogadro., Transformações Químicas, Representação das transformações químicas

Uma amostra de 5 L de benzeno líquido, armazenada em um galpão fechado de 1500 m3 contendo ar atmosférico, evaporou completamente. Todo o vapor permaneceu no interior do galpão.

Técnicos realizaram uma inspeção no local, obedecendo às normas de segurança que indicam o tempo máximo de contato com os vapores tóxicos do benzeno.

Observe a tabela:


Considerando as normas de segurança, e que a densidade do benzeno líquido é igual a 0,9 g.mL-1, o tempo máximo, em horas, que os técnicos podem permanecer no interior do galpão, corresponde a:

A
2
B
4
C
6
D
8
04c653a3-60
UERJ 2011, UERJ 2011, UERJ 2011 - Química - Teoria Atômica: átomos e sua estrutura - número atômico, número de massa, isótopos, massa atômica, Transformações Químicas

Segundo pesquisas recentes, há uma bactéria que parece ser capaz de substituir o fósforo por arsênio em seu DNA.

Uma semelhança entre as estruturas atômicas desses elementos químicos que possibilita essa substituição é:

A
número de elétrons
B
soma das partículas nucleares
C
quantidade de níveis eletrônicos
D
configuração da camada de valência
319e37c8-60
UERJ 2010 - Química - Teoria Atômica: átomos e sua estrutura - número atômico, número de massa, isótopos, massa atômica, Transformações Químicas: elementos químicos, tabela periódica e reações químicas, Transformações Químicas, Soluções e Substâncias Inorgânicas, Substâncias Inorgânicas e suas características: Ácidos, Bases, Sais e Óxidos. Reações de Neutralização.

O ácido não oxigenado formado por um ametal de configuração eletrônica da última camada 3s2 3p4 é um poluente de elevada toxicidade gerado em determinadas atividades industriais.
Para evitar seu descarte direto no meio ambiente, faz-se a reação de neutralização total entre esse ácido e o hidróxido do metal do 4º período e grupo IIA da tabela de classificação periódica dos elementos.
A fórmula do sal formado nessa reação é:

A
CaS
B
CaCl2
C
MgS
D
MgCl2
3189ad4d-60
UERJ 2010 - Química - Transformações Químicas: elementos químicos, tabela periódica e reações químicas, Transformações Químicas

Considere as quatro caixas abaixo, que contêm diferentes materiais residuais de uma indústria:

A única caixa que contém apenas metais está indicada pela seguinte letra:

A
W
B
X
C
Y
D
Z
fc4ee3c2-5f
UERJ 2010 - Química - Grandezas: massa, volume, mol, massa molar, constante de Avogadro e Estequiometria., Sistemas Gasosos - Lei, Teoria Cinética, Equação e Mistura dos Gases. Princípio de Avogadro., Transformações Químicas, Representação das transformações químicas

A bola utilizada em uma partida de futebol é uma esfera de diâmetro interno igual a 20 cm. Quando cheia, a bola apresenta, em seu interior, ar sob pressão de 1,0 atm e temperatura de 27 ºC.

Considere π = 3, R = 0,080 atm.L.mol-1 .k-1 e, para o ar, comportamento de gás ideal e massa molar igual a 30 g.mol-1.

No interior da bola cheia, a massa de ar, em gramas, corresponde a:

A
2,5
B
5,0
C
7,5
D
10,0
193228c8-98
UERJ 2015, UERJ 2015, UERJ 2015 - Química - Grandezas: massa, volume, mol, massa molar, constante de Avogadro e Estequiometria., Transformações Químicas: elementos químicos, tabela periódica e reações químicas, Química Orgânica, Fórmulas, Balanceamento e Leis ponderais das reações químicas, Tipos de Reações Orgânicas: Substituição, Adição e Eliminação., Transformações Químicas, Representação das transformações químicas

Para diferenciar os hidrocarbonetos etano e eteno em uma mistura gasosa, utiliza-se uma reação com bromo molecular: o etano não reage com esse composto, enquanto o eteno reage de acordo com a seguinte equação química:

Considere um cilindro de capacidade igual a 10 L, contendo apenas esses hidrocarbonetos em uma mistura com massa igual a 200 g. Ao se adicionar bromo em excesso à mistura, todo o eteno reagiu, formando 940 g de 1,2-dibromoetano.

A concentração inicial de etano, em mol.L–1, no interior do cilindro, corresponde a:

A
0,1
B
0,2
C
0,3
D
0,4
19105ffd-98
UERJ 2015, UERJ 2015 - Química - Sistemas Gasosos - Lei, Teoria Cinética, Equação e Mistura dos Gases. Princípio de Avogadro., Transformações Químicas

Para descrever o comportamento dos gases ideais em função do volume V, da pressão P e da temperatura T, podem ser utilizadas as seguintes equações:

Equação de Clapeyron Equação de Boltzmann

P × V = n × R × T P × V = N × k × T

n – número de mols N – número de moléculas

R – constante dos gases k – constante de Boltzmann

De acordo com essas equações, a razão R/k é aproximadamente igual a:

A
1/6 x 10-23
B
1/6 x 1023
C
6 x 10-23
D
6 x 1023