Questõesde UDESC sobre Esfera

1
1
1
Foram encontradas 3 questões
4ea16f70-c2
UDESC 2018 - Matemática - Esfera, Cone, Geometria Espacial, Cilindro

Arquimedes de Siracusa (287 a.C. -2 12 a.C.) foi um dos maiores matemáticos de todos os tempos. Ele fez grandes descobertas e sempre foi muito rigoroso ao provar essas descobertas. Dentre seus vários trabalhos, a esfera foi um dos elementos geométricos aos quais ele se dedicou, estabelecendo relações para obter o seu volume. No Quadro 1 têm-se três dessas relações para o volume de uma esfera de raio R.



Se o cone do método da dupla redução ao absurdo tiver volume igual a 243π cm³, então a diferença do volume entre o cilindro do método do equilíbrio e do cilindro circunscrito é:

A
972π cm³
B
0 cm³
C
546,75 π cm³
D
4374 π cm³
E
1701 π cm³
ab5ba381-b1
UDESC 2016 - Matemática - Esfera, Geometria Espacial, Cilindro, Poliedros

Considere as sentenças abaixo, e assinale (V) para verdadeira e (F) para falsa.

( ) Se o raio de uma esfera de raio 2 for multiplicado por 3, então o volume dessa esfera também ficará multiplicado por 3.

( ) O produto das diagonais de um paralelepípedo reto retângulo de dimensões 4 cm, 2 cm e 2 cm é igual a 576.

( ) Se um cilindro e um cone circular reto possuem a mesma altura e o raio do cilindro é o dobro do raio do cone, então o volume do cilindro é 12 vezes maior que o volume do cone.

Assinale a alternativa que contém a sequência correta, de cima para baixo.

A
V – V – F
B
F – V – V
C
F – V – F
D
F – F – V
E
V – F – V
e3e0ec29-b0
UDESC 2017 - Matemática - Sistema de Unidade de Medidas, Aritmética e Problemas, Esfera, Pirâmides, Cone, Prismas, Geometria Espacial, Cilindro, Poliedros

Em 1958, como trote para os calouros da universidade de Harvard, nos Estados Unidos, um grupo de estudantes precisou medir o comprimento da ponte de Harvard (entre Boston e Cambridge, em Massachusetts), usando como padrão de medida um dos próprios estudantes, um rapaz chamado Oliver R. Smoot. Após horas de medição, com o estudante deitando-se no chão e levantando-se sucessivas vezes para as medidas, concluiu-se que a ponte tinha 364,4 smoots, +/- 1 orelha.

A brincadeira fez tanto sucesso e a medição tornou-se tão popular que, na década de 1980, a ponte foi reformada pela prefeitura, que encomendou blocos de concreto personalizados de 1 smoot de comprimento para a reforma, eternizando as marcações colocadas no solo, que hoje já constam até no sistema de conversão de medidas da ferramenta Google.

Ainda mais interessante é o fato de que, alguns anos após formado, Oliver Smoot tornou-se diretor da ANSI, o Instituto Nacional Americano de Padrões (“American National Standards Institute”) e depois presidente da ISO, a Organização Internacional para Padronização (“International Organization for Standardization”).

Sabendo que Oliver Smoot tinha 5 pés e 7 polegadas de altura na ocasião da medida, desprezando o erro de +/- 1 orelha, e assumindo 1 pé = 30,5 cm e 1 polegada = 2,5 cm, o comprimento da ponte é:


A
600 m
B
619,48 m
C
633,51 m
D
111,14 m
E
117,85 m