Questõessobre Matemática

1
Foram encontradas 9393 questões
ae1fe006-57
ENEM 2021 - Matemática - Análise de Tabelas e Gráficos

O gráfico apresenta o nível de ocupação dos cinco reservatórios de água que abasteciam uma cidade em 2 de fevereiro de 2015.



Nessa data, o reservatório com o maior volume de água era o

A
I.
B
II.
C
III.
D
IV.
E
V.
ada925fa-57
ENEM 2021 - Matemática - Análise Combinatória em Matemática

Uma das bases mais utilizadas para representar um número é a base decimal. Entretanto, os computadores trabalham com números na base binária. Nessa base, qualquer número natural é representado usando apenas os algarismos 0 e 1. Por exemplo, as representações dos números 9 e 12, na base binária, são 1001 e 1100, respectivamente. A operação de adição, na base binária, segue um algoritmo similar ao utilizado na base decimal, como detalhado no quadro:



Por exemplo, na base binária, a soma dos números 10 e 10 é 100, como apresentado:



Considerando as informações do texto, o resultado da adição 9 + 12 será representado, na base binária, por

A
101.
B
1101.
C
1111.
D
10101.
E
110001.
adaf7949-57
ENEM 2021 - Matemática - Análise Combinatória em Matemática

Uma pessoa produzirá uma fantasia utilizando como materiais: 2 tipos de tecidos diferentes e 5 tipos distintos de pedras ornamentais. Essa pessoa tem à sua
disposição 6 tecidos diferentes e 15 pedras ornamentais distintas.


A quantidade de fantasias com materiais diferentes que podem ser produzidas é representada pela expressão

A

B

C

D

E

ade95e32-57
ENEM 2021 - Matemática - Sistema de Unidade de Medidas, Aritmética e Problemas, Porcentagem

     Para realizar um voo entre duas cidades que distam 2 000 km uma da outra, uma companhia aérea utilizava um modelo de aeronave A, capaz de transportar até 200 passageiros. Quando uma dessas aeronaves está lotada de passageiros, o consumo de combustível é de 0,02 litro por quilômetro e por passageiro. Essa companhia resolveu trocar o modelo de aeronave A pelo modelo de aeronave B, que é capaz de transportar 10% de passageiros a mais do que o modelo A, mas consumindo 10% menos combustível por quilômetro e por passageiro.

A quantidade de combustível consumida pelo modelo de aeronave B, em relação à do modelo de aeronave A, em um voo lotado entre as duas cidades, é

A
10% menor.
B
1% menor.
C
igual.
D
1 % maior.
E
11% maior.
add5e3f8-57
ENEM 2021 - Matemática - Sistema de Unidade de Medidas, Aritmética e Problemas

    Um automóvel apresenta um desempenho médio de 16 km/L. Um engenheiro desenvolveu um novo motor a combustão que economiza, em relação ao consumo do motor anterior, 0,1 L de combustível a cada 20 km percorridos.


O valor do desempenho médio do automóvel com o novo motor, em quilômetro por litro, expresso com uma casa decimal, é

A
15,9.
B
16,1.
C
16,4.
D
17,4.
E
18,0.
ae04510c-57
ENEM 2021 - Matemática - Análise de Tabelas e Gráficos

    A receita R de uma empresa ao final de um mês é o dinheiro captado com a venda de mercadorias ou com a prestação de serviços nesse mês, e a despesa D é todo o dinheiro utilizado para pagamento de salários, contas de água e luz, impostos, entre outros. O lucro mensal obtido ao final do mês é a diferença entre a receita e a despesa registradas no mês. O gráfico apresenta as receitas e despesas, em milhão de real, de uma empresa ao final dos cinco primeiros meses de um dado ano.



    A previsão para os próximos meses é que o lucro mensal não seja inferior ao maior lucro obtido até o mês de maio.

Nessas condições, o lucro mensal para os próximos meses deve ser maior ou igual ao do mês de

A
janeiro.
B
fevereiro.
C
março.
D
abril.
E
maio.
adc069da-57
ENEM 2021 - Matemática - Polígonos, Geometria Plana

    Muitos brinquedos que frequentemente são encontrados em praças e parques públicos apresentam formatos de figuras geométricas bidimensionais e tridimensionais. Uma empresa foi contratada para desenvolver uma nova forma de brinquedo. A proposta apresentada pela empresa foi de uma estrutura formada apenas por hastes metálicas, conectadas umas às outras, como apresentado na figura. As hastes de mesma tonalidade e espessura são congruentes.



Com base na proposta apresentada, quantas figuras geométricas planas de cada tipo são formadas pela união das hastes?

A
12 trapézios isósceles e 12 quadrados.
B
24 trapézios isósceles e 12 quadrados.
C
12 paralelogramos e 12 quadrados.
D
8 trapézios isósceles e 12 quadrados.
E
12 trapézios escalenos e 12 retângulos.
ae236224-57
ENEM 2021 - Matemática - Aritmética e Problemas, Médias

Uma pessoa realizou uma pesquisa com alguns alunos de uma escola, coletando suas idades, e organizou esses dados no gráfico.



Qual é a média das idades, em ano, desses alunos?

A
9
B
12
C
18
D
19
E
27
ae2a40b0-57
ENEM 2021 - Matemática - Estatística

    Um zootecnista pretende testar se uma nova ração para coelhos é mais eficiente do que a que ele vem utilizando atualmente. A ração atual proporciona uma massa média de 10 kg por coelho, com um desvio padrão de 1 kg, alimentado com essa ração durante um período de três meses.

    O zootecnista selecionou uma amostra de coelhos e os alimentou com a nova ração pelo mesmo período de tempo. Ao final, anotou a massa de cada coelho, obtendo um desvio padrão de 1,5 kg para a distribuição das massas dos coelhos dessa amostra.

    Para avaliar a eficiência dessa ração, ele utilizará o coeficiente de variação (CV) que é uma medida de dispersão definida por CV, em que s representa o desvio padrão e , a média das massas dos coelhos que foram alimentados com uma determinada ração.

    O zootecnista substituirá a ração que vinha utilizando pela nova, caso o coeficiente de variação da distribuição das massas dos coelhos que foram alimentados com a nova ração for menor do que o coeficiente de variação da distribuição das massas dos coelhos que foram alimentados com a ração atual.

A substituição da ração ocorrerá se a média da distribuição das massas dos coelhos da amostra, em quilograma, for superior a

A
5,0.
B
9,5.
C
10,0.
D
10,5.
E
15,0.
add94311-57
ENEM 2021 - Matemática - Álgebra, Problemas

    O projeto de um contêiner, em forma de paralelepípedo reto retangular, previa a pintura dos dois lados (interno e externo) de cada uma das quatro paredes com tinta acrílica e a pintura do piso interno com tinta epóxi. O construtor havia pedido, a cinco fornecedores diferentes, orçamentos das tintas necessárias, mas, antes de iniciar a obra, resolveu mudar o projeto original, alterando o comprimento e a largura para o dobro do originalmente previsto, mantendo inalterada a altura. Ao pedir novos orçamentos aos fornecedores, para as novas dimensões, cada um deu uma resposta diferente sobre as novas quantidades de tinta necessárias.

Em relação ao previsto para o projeto original, as novas quantidades de tinta necessárias informadas pelos fornecedores foram as seguintes:

• Fornecedor I: “O dobro, tanto para as paredes quanto para o piso.”
• Fornecedor II: “O dobro para as paredes e quatro vezes para o piso.”
• Fornecedor III: “Quatro vezes, tanto para as paredes quanto para o piso.”
• Fornecedor IV: “Quatro vezes para as paredes e o dobro para o piso.”
• Fornecedor V: “Oito vezes para as paredes e quatro vezes para o piso.”

Analisando as informações dos fornecedores, o construtor providenciará a quantidade adequada de material. Considere a porta de acesso do contêiner como parte de uma das paredes.

Qual dos fornecedores prestou as informações adequadas, devendo ser o escolhido pelo construtor para a aquisição do material?

A
I
B
II
C
III
D
IV
E
V
adf0770a-57
ENEM 2021 - Matemática - Sistema de Unidade de Medidas, Aritmética e Problemas

    Um nutricionista verificou, na dieta diária do seu cliente, a falta de 800 mg do mineral A, de 1 000 mg do mineral B e de 1 200 mg do mineral C. Por isso, recomendou a compra de suplementos alimentares que forneçam os minerais faltantes e informou que não haveria problema se consumisse mais desses minerais do que o recomendado.

    O cliente encontrou cinco suplementos, vendidos em saches unitários, cujos preços e as quantidades dos minerais estão apresentados a seguir:

• Suplemento I: contém 50 mg do mineral A, 100 mg do mineral B e 200 mg do mineral C e custa R$ 2,00;
• Suplemento II: contém 800 mg do mineral A, 250 mg do mineral B e 200 mg do mineral C e custa R$ 3,00;
• Suplemento III: contém 250 mg do mineral A, 1 000 mg do mineral B e 300 mg do mineral C e custa R$ 5,00;
• Suplemento IV: contém 600 mg do mineral A, 500 mg do mineral B e 1 000 mg do mineral C e custa R$ 6,00;
• Suplemento V: contém 400 mg do mineral A, 800 mg do mineral B e 1 200 mg do mineral C e custa R$ 8,00.

    O cliente decidiu comprar sachês de um único suplemento no qual gastasse menos dinheiro e ainda suprisse a falta de minerais indicada pelo nutricionista, mesmo que consumisse alguns deles além de sua necessidade.

Nessas condições, o cliente deverá comprar sachês do suplemento

A
I.
B
II.
C
III.
D
IV.
E
V.
adc3525c-57
ENEM 2021 - Matemática - Geometria Espacial, Poliedros

    Num octaedro regular, duas faces são consideradas opostas quando não têm nem arestas, nem vértices em comum. Na figura, observa-se um octaedro regular e uma de suas planificações, na qual há uma face colorida na cor cinza escuro e outras quatro faces numeradas.



Qual(is) face(s) ficará(ão) oposta(s) à face de cor cinza escuro, quando o octaedro for reconstruído a partir da planificação dada?

A
1, 2, 3 e 4
B
1 e 3
C
1
D
2
E
4
adf3744a-57
ENEM 2021 - Matemática - Aritmética e Problemas, Porcentagem

    Um atleta produz sua própria refeição com custo fixo de R$ 10,00. Ela é composta por 400 g de frango, 600 g de batata-doce e uma hortaliça. Atualmente, os preços dos produtos para essa refeição são:



    Em relação a esses preços, haverá um aumento de 50% no preço do quilograma de batata-doce, e os outros preços não serão alterados. O atleta deseja manter o custo da refeição, a quantidade de batata-doce e a hortaliça.

Portanto, terá que reduzir a quantidade de frango. Qual deve ser a redução percentual da quantidade de frango para que o atleta alcance seu objetivo?

A
12,5
B
28,0
C
30,0
D
50,0
E
70,0
adfd82b4-57
ENEM 2021 - Matemática - Análise de Tabelas e Gráficos

    Um parque temático brasileiro construiu uma réplica em miniatura do castelo de Liechtenstein. O castelo original, representado na imagem, está situado na Alemanha e foi reconstruído entre os anos de 1840 e 1842, após duas destruições causadas por guerras.



    O castelo possui uma ponte de 38,4 m de comprimento e 1,68 m de largura. O artesão que trabalhou para o parque produziu a réplica do castelo, em escala. Nessa obra, as medidas do comprimento e da largura da ponte eram, respectivamente, 160 cm e 7 cm.

A escala utilizada para fazer a réplica é


A
1 : 576
B
1 : 240
C
1 : 24
D
1 : 4,2
E
1 : 2,4
adbd3e87-57
ENEM 2021 - Matemática - Álgebra, Problemas

Após consulta médica, um paciente deve seguir um tratamento composto por três medicamentos: X, Y e Z. O paciente, para adquirir os três medicamentos, faz um orçamento em três farmácias diferentes, conforme o quadro.



Dessas farmácias, algumas oferecem descontos:

• na compra dos medicamentos X e Y na Farmácia 2, recebe-se um desconto de 20% em ambos os produtos, independentemente da compra do medicamento Z, e não há desconto para o medicamento Z;
• na compra dos 3 medicamentos na Farmácia 3, recebe-se 20% de desconto no valor total da compra.

O paciente deseja efetuar a compra de modo a minimizar sua despesa com os medicamentos.

De acordo com as informações fornecidas, o paciente deve comprar os medicamentos da seguinte forma:

A
X, Y e Z na Farmácia 1.
B
X e Y na Farmácia 1, e Z na Farmácia 3.
C
X e Y na Farmácia 2, e Z na Farmácia 3.
D
X na Farmácia 2, e Y e Z na Farmácia 3.
E
X, Y e Z na Farmácia 3.
ae35c8c9-57
ENEM 2021 - Matemática - Álgebra, Problemas

    Aplicativos que gerenciam serviços de hospedagem têm ganhado espaço no Brasil e no mundo por oferecer opções diferenciadas em termos de localização e valores de hospedagem. Em um desses aplicativos, o preço P a ser pago pela hospedagem é calculado considerando um preço por diária d, acrescido de uma taxa fixa de limpeza L e de uma taxa de serviço. Essa taxa de serviço é um valor percentual s calculado sobre o valor pago pelo total das diárias.

Nessa situação, o preço a ser pago ao aplicativo para uma hospedagem de n diárias pode ser obtido pela expressão

A
P = d.n + L + d.n.s
B
P = d.n + L + d.s
C
P = d + L + s
D
P = d.n.s + L
E
P = d.n + L + s
ada5f603-57
ENEM 2021 - Matemática - Aritmética e Problemas, Sistemas de Numeração e Operações Fundamentais

O sistema de numeração romano ainda é utilizado na indicação de capítulos e volumes de livros, na designação de séculos e, em ordem cronológica, de papas e reis de mesmo nome. São utilizadas sete letras do alfabeto:

Quatro fundamentais: I (vale 1); X (vale 10); C (vale 100) e M (vale 1 000).

Três secundárias: V (vale 5); L (vale 50) e D (vale 500).

As regras para escrever números romanos são:
1. Não existe símbolo correspondente ao zero;
2. Os símbolos fundamentais podem ser repetidos até três vezes e seus valores são adicionados. Exemplo: XXX = 30;
3. Uma letra posta à esquerda de outra de maior valor indica subtração dos respectivos valores. Exemplo: IX = 10 - 1 = 9;
4. Uma letra posta à direita de outra de maior valor indica adição dos respectivos valores. Exemplo: XI = 10 + 1 = 11.

Em uma cidade europeia há uma placa indicando o ano de sua fundação: MCDLXIX.

Quantos anos de fundação essa cidade comemorará em 2050?

A
379
B
381
C
579
D
581
E
601
ae0b3476-57
ENEM 2021 - Matemática - Análise de Tabelas e Gráficos

    Um casal está planejando comprar um apartamento de dois quartos num bairro de uma cidade e consultou a página de uma corretora de imóveis, encontrando 105 apartamentos de dois quartos à venda no bairro desejado. Eles usaram um aplicativo da corretora para gerar a distribuição dos preços do conjunto de imóveis selecionados.

    O gráfico ilustra a distribuição de frequências dos preços de venda dos apartamentos dessa lista (em mil reais), no qual as faixas de preço são dadas por ]300, 400], ]400, 500], ]500, 600], ]600, 700], ]700, 800], ]800, 900], ]900, 1 000], ]1 000, 1 100], ]1 100, 1 200] e ]1 200, 1 300].

    A mesma corretora anuncia que cerca de 50% dos apartamentos de dois quartos nesse bairro, publicados em sua página, têm preço de venda inferior a 550 mil reais. No entanto, o casal achou que essa última informação não era compatível com o gráfico obtido.



Com base no gráfico obtido, o menor preço, p (em mil reais), para o qual pelo menos 50% dos apartamentos apresenta preço inferior a p é

A
600.
B
700.
C
800.
D
900.
E
1 000.
ae4092b8-57
ENEM 2021 - Matemática - Aritmética e Problemas, Razão, Proporção e Números Proporcionais

    Um segmento de reta está dividido em duas partes na proporção áurea quando o todo está para uma das partes na mesma razão em que essa parte está para a outra. Essa constante de proporcionalidade é comumente representada pela letra grega φ, e seu valor é dado pela solução positiva da equação φ2 = φ + 1.

    Assim como a potência φ2, as potências superiores de φ  podem ser expressas da forma aφ + b, em que a e b são inteiros positivos, como apresentado no quadro.



A potência φ7, escrita na forma aφ + b {a e b são inteiros positivos), é

A
5φ + 3
B
7φ + 2
C
9φ + 6
D
11φ + 7
E
13φ + 8
adf72151-57
ENEM 2021 - Matemática - Física Matemática

    Uma mola é solta da posição distendida conforme a figura. Afigura à direita representa o gráfico da posição P (em cm) da massa m em função do tempo t (em segundo) em um sistema de coordenadas cartesianas. Esse movimento periódico é descrito por uma expressão do tipo P(t) = ± A cos (ωt) ou P(t) = ± A sen (ωt), em que A > 0 é a amplitude de deslocamento máximo e ω é a frequência, que se relaciona com o período T pela fórmula ω = 2π/T.

Considere a ausência de quaisquer forças dissipativas.



A expressão algébrica que representa as posições P(t) da massa m, ao longo do tempo, no gráfico, é

A
-3 cos (2t)
B
-3 sen (2t)
C
3 cos (2t)
D
-6 cos (2t)
E
6 sen (2t)