Questõessobre Circunferências e Círculos

1
1
Foram encontradas 304 questões
936e6299-ba
UNEB 2009 - Matemática - Pontos e Retas, Circunferências e Círculos, Geometria Analítica, Geometria Plana

Uma pessoa começou a fazer caminhada em torno de uma praça circular, andando sempre no mesmo sentido, de modo que, a cada dia, a caminhada era iniciada em um ponto diferente da praça: P1, no primeiro dia, P2, no segundo dia, P3, no terceiro dia, e assim sucessivamente. Sabendo-se que P1, P2, P3... são pontos da circunferência que contorna a praça, tais que cada setor mede 48° , pode-se afirmar que essa pessoa iniciou a caminhada em P1 pela segunda vez, no

A
8° dia de caminhada.
B
10° dia de caminhada.
C
12° dia de caminhada.
D
16° dia de caminhada.
E
20° dia de caminhada.
de48915a-b9
UECE 2016 - Matemática - Aritmética e Problemas, Porcentagem, Circunferências e Círculos, Geometria Plana

Ao aumentarmos em 20% a medida do raio de um círculo, sua área sofrerá um aumento de

A
36%.
B
40%.
C
44%.
D
52%.
ed0d80ce-b9
UERJ 2016 - Matemática - Seno, Cosseno e Tangente, Circunferências e Círculos, Trigonometria, Polígonos, Geometria Plana

No esquema abaixo, estão representados um quadrado ABCD e um círculo de centro P e raio r,tangente às retas AB e BC. O lado do quadrado mede 3r.
A medida θ do ângulo CÂP pode ser determinada a partir da seguinte identidade trigonométrica:

                                                               tg (α - β) =  tg(α) - tg(β)/1 + tg(α) × tg(β) 


O valor da tangente de θ é igual a:

A
0,65
B
0,60
C
0,55
D
0,50
cb798e10-b9
UNIVESP 2019 - Matemática - Circunferências e Círculos, Geometria Plana, Triângulos

Brincando em um programa de computador para desenho, Maria desenhou um triângulo retângulo isósceles; um quadrado dentro deste triângulo, com um dos vértices tangenciando a hipotenusa; e um círculo dentro deste quadrado. O desenho é o mostrado na figura abaixo. Sabendo que o diâmetro do círculo é metade do lado do quadrado, assinale a alternativa correta sobre qual a relação entre a área do triângulo e a área do círculo desenhados por Maria.
Figura: Triângulo, quadrado e círculo desenhados por Maria.

A
A área do triângulo é 16/π vezes a área do círculo
B
A área do triângulo é 32/π vezes a área do círculo
C
A área do triângulo é 24/π vezes a área do círculo
D
A área do triângulo é 20/π vezes a área do círculo
E
A área do triângulo é 18/π vezes a área do círculo
a0c76dc8-b7
ENEM 2019 - Matemática - Circunferências e Círculos, Geometria Plana

     Uma pista circular delimitada por duas circunferências concêntricas foi construída. Na circunferência interna dessa pista, de raio 0,3 km, serão colocados aparelhos de ginástica localizados nos pontos P, Q e R, conforme a figura.


O segmento RP é um diâmetro dessa circunferência interna, e o ângulo  tem medida igual a π/5 radianos.

Para uma pessoa ir do ponto P ao ponto Q andando pela circunferência interna no sentido anti-horário, ela percorrerá uma distância, em quilômetro, igual a

A
0,009π
B
0,03π
C
0,06π
D
0,12π
E
0,18π
d7b24c53-b8
UECE 2014 - Matemática - Circunferências e Círculos, Geometria Plana, Triângulos

Sejam x,y,e z as medidas dos lados do triângulo XYZ e R a medida do raio da circunferência circunscrita ao triângulo. Se o produto dos senos dos ângulos internos do triângulo é k.x.y.z/R3 , então o valor de k é

A
0,500.
B
0,250.
C
0,125.
D
1,000.
a381bc61-b8
UECE 2015 - Matemática - Circunferências e Círculos, Geometria Plana

No plano, as circunferências C1 e C2, cuja medida dos raios são respectivamente 4 cm e 1 cm tangenciam-se exteriormente e são tangentes a uma reta r em pontos distintos. Uma terceira circunferência C3, exterior a C1 e a C2, cuja medida do raio é menor do que 1 cm tangencia a reta r e as circunferências C1 e C2. Nestas condições a medida do raio da circunferência C3 é

A
1/2 cm.
B
1/3 cm.
C
4/9 cm.
D
3/5 cm.
5a6b28d4-b7
UECE 2012 - Matemática - Circunferências e Círculos, Geometria Plana

Uma circunferência cuja medida do raio é 8 m é dividida em sete arcos de comprimentos iguais. Usando-se o valor 0,4338 para uma aproximação de sen π/7, a medida, em metros, da distância entre as extremidades de um destes arcos é um número situado entre

A
6,93 e 6,94.
B
6,94 e 6,95.
C
6,95 e 6,96.
D
6,96 e 6,97.
5eb495d4-b6
UFVJM-MG 2016 - Matemática - Circunferências e Círculos, Geometria Plana

Em um parque de diversão, Pedro e Marta resolveram brincar em uma roda gigante que contém 8 bancos (individuais) igualmente espaçados e que gira no sentido anti-horário, conforme demonstrado nesta figura.



Para ocupar todos os bancos, cada criança foi colocada no brinquedo, pela rampa de acesso, de maneira organizada (uma a uma) sem saltar nenhum banco. Pedro sentou-se no banco A e Marta, que foi a última a entrar, sentou-se no banco D. Todos os lugares foram ocupados.

Quando Marta completou 4 voltas completas (1440°), a distância percorrida por Pedro, em graus, era de:

A
1485
B
1530
C
1665
D
1710
dbb92d09-b6
UFAL 2014 - Matemática - Circunferências e Círculos, Geometria Plana

[...]
A Brazuca passou por um intenso programa de testes durante mais de dois anos e envolveu mais de 600 dos melhores jogadores do mundo, além de 30 equipes de 10 países como o Milan, o Bayern de Munique, o Palmeiras e o Fluminense. Craques como Messi, Casillas, Schweinsteiger e Zidane foram alguns dos jogadores que testaram a bola.
[...]
É a Fifa (Fédération Internationale de Football Association) quem estabelece as dimensões e os requisitos oficiais do campo, dos equipamentos e dos acessórios para a prática de futebol. A bola oficial deve ter pressão entre 60,8 kilopascal a 111,5 kilopascal. O peso deve ficar entre 410 gramas e 450 gramas (no começo da partida) e a circunferência deve estar entre 68 centímetros e 70 centímetros.
[...]
Disponível em: : <http://ipemsp.wordpress.com/futebol-medidas-e-curiosidades-metrologicas/>. Acesso em: 14 jun. 2014. 25.

Se adotarmos π = 3, qual o volume, em cm3 , de uma brazuca cuja circunferência (circunferência do círculo máximo) é igual a 69 cm?

A
233/2
B
233/8
C
3/2 . 233
D
4 . 233
E
12 . 233
1b6d69bd-b6
UEPB 2010 - Matemática - Álgebra, Circunferências e Círculos, Geometria Plana, Produtos Notáveis e Fatoração

Uma corda da circunferência de equação (x – 4)2 + (y – 5)2 = 16 tem ponto médio (6,7). Se α é o ângulo que a reta suporte de forma com o eixo x, então tgα é:

A
2
B
1
C
-1/2
D
-2
E
-1
1adcd4cd-b6
UEPB 2010 - Matemática - Circunferências e Círculos, Geometria Plana

Na figura, temos duas circunferências concêntricas coplanares. Sendo = 2cm , e 3cm o comprimento do arco PM, o comprimento do arco QN será:


A
4 cm
B
6 cm
C
5 cm
D
7 cm
E
8 cm
7bcdaa4e-b6
IF-GO 2010 - Matemática - Áreas e Perímetros, Circunferências e Círculos, Geometria Plana

A área do círculo determinado pela circunferência de equação


x2 + y2 + 2x + 2y - 23 = 0

é igual a:

A
15π2
B
C
16π2
D
25π
E
23π
ddd477bf-b6
IFN-MG 2018, IFN-MG 2018, IFN-MG 2018 - Matemática - Sistema de Unidade de Medidas, Aritmética e Problemas, Circunferências e Círculos, Geometria Plana

Um copo cilíndrico, que pode receber até 200cm3 de líquido sem transbordar, tem uma área superficial, em função do seu raio, de:

A
400/r + πr2 com r>0
B
400/r, com r >0
C
200/r + πr2 com r >0
D
200/r, com r>0
a81068f2-b6
IF Sudeste - MG 2018 - Matemática - Pontos e Retas, Circunferências e Círculos, Geometria Analítica, Geometria Plana

A equação da reta perpendicular à reta y = -x + 3 que passa pelo centro da circunferência x2 - 2x + y2 - 5 = 0 é dada por:

A
y = -x - 1
B
y = x + 1
C
y = x -3
D
y = -x -3
E
y= x - 1
b48c3609-b6
UECE 2010 - Matemática - Seno, Cosseno e Tangente, Circunferências e Círculos, Trigonometria, Geometria Plana

Se E1 e E2 são duas circunferências concêntricas cujas medidas dos raios são respectivamente 3 m e 5 m e se uma reta tangente a E1 intercepta E2 nos pontos X e Y, então a medida, em metros, do segmento de reta XY é

A
4.
B
6.
C
8.
D
10.
87dbb504-b4
UEFS 2011 - Matemática - Circunferências e Círculos, Geometria Plana

Considere, no sistema de coordenadas cartesianas, uma circunferência que tangencia o eixo das ordenadas em  y =  √112 e também tangencia a reta  √7y - 3x = 0,
Sabendo-se que nenhum ponto da circunferência tem coordenadas negativas, pode-se afirmar que a distância do centro da circunferência à origem é, em u.c., aproximadamente, igual a

A
8
B
9
C
10
D
11
E
12
87d1924f-b4
UEFS 2011 - Matemática - Áreas e Perímetros, Circunferências e Círculos, Geometria Plana, Polígonos Regulares

O quadrado e o círculo representados na figura têm centro no mesmo ponto e, nessa figura, as regiões sombreadas têm área de mesma medida.



Nessas condições, pode-se afirmar que

A
a área do círculo é igual à área do quadrado.
B
a área do círculo é menor do que a área do quadrado.
C
a área do círculo é maior do que a área do quadrado.
D
a relação entre as áreas do círculo e do quadrado depende da medida do lado do quadrado.
E
a relação entre as áreas do círculo e do quadrado depende da medida do raio da circunferência.
87a54405-b4
UEFS 2011 - Matemática - Circunferências e Círculos, Geometria Plana, Números Complexos

Considerem-se, no plano complexo representado na figura, os pontos P, Q e R pertencentes a uma circunferência de centro na origem.



Sendo P o afixo de z = 2 - 3/2i e QR, um arco medindo 5µ/12, pode-se afirmar que o ponto R é afixo do número complexo que pode ser representado, algebricamente, por

A
5/4 (-1 + i√3)
B
5√2/4 (-1 + i√3)
C
5/4 (-√3 + i)
D
7/4 (-√3 + i)
E
5√2/4 (-1 + i)
7c608364-b4
Unimontes - MG 2018 - Matemática - Circunferências e Círculos, Geometria Plana

Para determinados valores de b , a reta y - x - b = 0 , bIR  , intercepta a circunferência x2 + y2 = 1 em um único ponto. A soma de todos os valores de b que satisfazem a afirmação é igual a  

A
√2.
B
2√2.
C
2.
D
0.