Questõessobre Álgebra

1
1
Foram encontradas 808 questões
4d1d405c-fd
ESPM 2018 - Matemática - Álgebra, Produtos Notáveis e Fatoração

As soluções reais da equação (x² – x)² + (y² – y)² = 0 representadas em um plano cartesiano, são vértices de um polígono cuja área vale:

A
1
B
2
C
√2
D
2√2
E
4
4d23a1c8-fd
ESPM 2018 - Matemática - Álgebra, Problemas

Daqui a 3 anos, a idade de um pai será a soma das idades que terão sua esposa e seu filho. Quando a esposa nasceu, a idade do pai era:

A
igual à idade atual do seu filho.
B
o dobro da idade atual do seu filho.
C
menor que a idade atual do seu filho.
D
3 anos a menos que a idade atual do seu filho.
E
igual à idade que terá seu filho daqui a 3 anos.
cee370ed-fa
UFRGS 2019 - Matemática - Álgebra, Equação do 2º Grau e Problemas do 2º Grau

Se a equação x2 + 2x - 8 = 0 tem as raízes a e b, então o valor de (1/a + 1/b)2 é

A

-1/16.

B
- 1/4.
C

1/16.

D
1/4.
E

1.

cedf9937-fa
UFRGS 2019 - Matemática - Aritmética e Problemas, Álgebra, Frações e Números Decimais, Produtos Notáveis e Fatoração

Considere as seguintes afirmações sobre números racionais.

I - Se 0 < a/b < c/d, então (a/b)2 < (c/d)2.
II - Se a/b < 0 < c/d, então c/d + a/b > 0.
III - Toda fração da forma a/b é irredutível.

Quais estão corretas?

A
Apenas I.
B
Apenas II.
C
Apenas III.
D
Apenas II e III.
E
I, II e III.
cf2e18ba-fa
UFRGS 2019 - Matemática - Álgebra, Produtos Notáveis e Fatoração

A área do quadrilátero formado pelos pontos de interseção da circunferência de equação (x + 1)2 + y2 = 4 com os eixos coordenados é

A

√3.

B
2√3.
C
3√3.
D
4√3.
E
12.
bb5211ef-f7
UEG 2016 - Matemática - Álgebra, Problemas

Um artesão fabrica certo tipo de peças a um custo de R$ 10,00 cada e as vende no mercado de artesanato com preço variável que depende da negociação com o freguês. Num certo dia, ele vendeu 2 peças por R$ 25,00 cada, 4 peças por R$ 22,50 cada e mais 4 peças por R$ 20,00 cada. O lucro médio do artesão nesse dia foi de

A
R$ 22,50
B
R$ 22,00
C
R$ 19,20
D
R$ 12,50
E
R$ 12,00
ad68867f-fa
FASEH 2019, FASEH 2019 - Matemática - Álgebra, Problemas

IMC é a sigla para Índice de Massa Corpórea, parâmetro adotado pela Organização Mundial de Saúde para calcular o peso ideal de cada pessoa. O índice é calculado da seguinte maneira: divide-se o peso, em Kg, do paciente pela sua altura, em m, elevada ao quadrado. Diz-se que o indivíduo tem peso normal quando o resultado do IMC está entre 18,5 e 24,9.
(Disponível em:
<https://www.programasaudefacil.com.br/calculadora-de-imc>. Acesso
em: 05/10/2019. Adaptado.)

Paula tem 1,60 m de altura, pesa 64 kg e, ao calcular o seu IMC, afirmou que o seu peso está normal. Nesse contexto, pode-se afirmar que Paula:

A
Está correta, pois o seu IMC é igual a 20.
B
Não está correta, pois o seu IMC é igual a 40.
C
Não está correta, pois o seu IMC é igual a 25.
D
Está correta, pois o seu IMC é maior que 24,9.
ad7a6619-fa
FASEH 2019 - Matemática - Potenciação, Álgebra

Considere a seguinte expressão numérica:



É correto afirmar que o dobro do valor dessa expressão é um número:

A
Múltiplo de 9.
B
Divisor de 729.
C
Divisível por 12.
D
Ímpar e não-primo.
ad84a9bd-fa
FASEH 2019, FASEH 2019 - Matemática - Álgebra, Problemas

Débora, Marco e Carolina são funcionários de uma fábrica e recebem, respectivamente, salários que são inversamente proporcionais aos números 4, 6 e 8. A soma dos salários desses 3 funcionários corresponde a R$ 4.394,00. Nessa situação, conclui-se corretamente que:

A
O salário de Marco é maior que R$ 1.400,00.
B
O salário de Marco corresponde a 2/3 do salário de Débora.
C
O salário de Carolina corresponde ao dobro do salário de Débora.
D
A soma do salário de Marco com o de Carolina é menor que salário de Débora.
7bdf6c63-f6
UNINOVE 2015 - Matemática - Álgebra, Equação do 2º Grau e Problemas do 2º Grau

O comportamento do movimento de alguns sistemas mecânicos relaciona-se com as soluções de equações do 2º grau. Considera-se que o movimento é oscilatório e amortecido caso ambas as soluções sejam números complexos da forma Z = a + bi, com a, b ∈ IR, ab ≠ 0 e a < 0; além disso, quanto menor for a parte real de Z, mais rápido é o amortecimento. A tabela mostra as raízes das equações do 2º grau associadas a cinco sistemas oscilatórios e amortecidos.



Considere o sistema ALFA, associado à equação x2 + 6x + 10 = 0. Entre os sistemas da tabela, aquele que possui amortecimento mais rápido que o do sistema ALFA é

A
BETA 3.
B
BETA 1.
C
BETA 2.
D
BETA 4.
E
BETA 5.
7bd586f1-f6
UNINOVE 2015 - Matemática - Álgebra, Problemas

Maria optou por fazer um investimento que, de acordo com o contrato, no primeiro dia de cada mês ela recebe uma parcela fixa de 1% do seu capital investido inicialmente, porém seu dinheiro não pode ser movimentado. O contrato é encerrado no momento em que Maria movimenta o dinheiro. Considere que Maria investiu, no dia 20 de janeiro de 2013, R$ 100.000,00: pelo contrato, no dia 01 de fevereiro ela recebeu a primeira remessa dos juros. No dia seguinte à data em que o montante completou R$ 125.000,00, Maria movimentou o dinheiro investido e o contrato foi encerrado.

O dia de encerramento do contrato foi

A
02 de fevereiro de 2015.
B
01 de março de 2015.
C
01 de janeiro de 2015.
D
02 de janeiro de 2015.
E
01 de fevereiro de 2015.
6ac13377-e9
UERJ 2021 - Matemática - Sistema de Unidade de Medidas, Aritmética e Problemas, Álgebra, Porcentagem, Problemas

Diferentes defensivos agrícolas podem intoxicar trabalhadores do campo. Admita uma situação na qual, quando intoxicado, o corpo de um trabalhador elimine, de modo natural, a cada 6 dias, 75% da quantidade total absorvida de um agrotóxico. Dessa forma, na absorção de 50 mg desse agrotóxico, a quantidade presente no corpo será dada por:
V(t) = 50 × (0,25)(t/6) miligramas
Assim, o tempo t, em dias, necessário para que a quantidade total desse agrotóxico se reduza à 25 mg no corpo do trabalhador é igual a:

A
2
B
3
C
4
D
5
c61c1176-9e
ULBRA 2018 - Matemática - Álgebra, Problemas

Maurício se deparou com as seguintes informações em uma loja:


- O preço de três cadernos e duas canetas é R$ 19,00.

- O preço de dois cadernos e três canetas é R$ 16,00.

- O preço de um caderno e uma caneta é ______.


Com base nessas informações, escolha a alternativa que completa, corretamente, esta lacuna.

A
R$ 5,00
B
R$ 7,00
C
R$ 8,00
D
R$ 9,00
E
R$ 11,00
d29ec42d-8c
UNICAMP 2021 - Matemática - Potenciação, Álgebra, Radiciação

Sabendo que 100,3 < 2 < 100,31 e que x é tal que 2021√103x + 5 = 20, então

A
855 x < 870.
B
870 x < 885.
C
855 x < 900.
D
900 x < 1005.
0ca1ed9d-88
CEDERJ 2020 - Matemática - Álgebra, Problemas

Admita que, em uma família, Antônio é 9 anos mais velho do que João e 36 anos mais novo do que Pedro. Se as idades de João, Antônio e Pedro formam, nessa ordem, uma progressão geométrica, a soma dos algarismos do número que representa, em anos, a idade de Antônio é:

A
2
B
3
C
4
D
5
aee1f6c6-00
UDESC 2019 - Matemática - Aritmética e Problemas, Álgebra, Problemas, Regra de Três

Duas engrenagens X e Y têm 22 e 34 dentes, respectivamente. Elas estão encaixadas de modo que um motor ligado à engrenagem X a faz girar no sentido anti-horário e essa faz a engrenagem Y girar no sentido horário. Sabe-se que a engrenagem Y demora 2 minutos para realizar uma revolução completa. As duas engrenagens retornarão à posição inicial após:

A
11 minutos de o motor ter sido ligado.
B
17 minutos de o motor ter sido ligado.
C
17 voltas completas da engrenagem Y.
D
22 minutos de o motor ter sido ligado.
E
11 voltas completas da engrenagem X.
cd700abe-eb
ULBRA 2010 - Matemática - Álgebra, Equação do 2º Grau e Problemas do 2º Grau, Geometria Plana, Ângulos - Lei Angular de Thales

Um motociclista deseja saltar de uma rampa até outra, conforme a figura a seguir:



Ajustado o ângulo e a velocidade (m/s) do salto, ele modela a situação e chega à lei de formação f(x) = -x² + 42x – 80. A distância horizontal deste salto foi de:

A
24 m.
B
30 m.
C
38 m.
D
45 m.
E
52 m.
eb224d35-7f
IMT - SP 2020 - Matemática - Circunferências, Álgebra, Pontos e Retas, Geometria Analítica, Produtos Notáveis e Fatoração

Considere, no plano cartesiano, a circunferência C de equação (x-1)² + (y-1)² = 1 e o ponto A de coordenadas (1,3) . Uma reta t, com coeficiente angular negativo, passa por A e é tangente a C em um ponto B. É correto afirmar que as distâncias de A a B e do ponto de intersecção da reta t com o eixo das abcissas até a origem do sistema de coordenadas são, respectivamente,

A

B

C
2 e 5/2
D
1 e 4
E

de7c3618-7b
USP 2021 - Matemática - Álgebra, Problemas

Uma treinadora de basquete aplica o seguinte sistema de pontuação em seus treinos de arremesso à cesta: cada jogadora recebe 5 pontos por arremesso acertado e perde 2 pontos por arremesso errado. Ao fim de 50 arremessos, uma das jogadoras contabilizou 124 pontos. Qual é a diferença entre as quantidades de arremessos acertados e errados dessa jogadora?

A
12
B
14
C
16
D
18
E
20
6952112f-7c
ENEM 2020 - Matemática - Potenciação, Álgebra

Se a tartaruga, a lesma e o caramujo apostassem uma corrida, a lesma chegaria em último lugar, o penúltimo colocado seria o caramujo e a primeira seria a tartaruga. Segundo o biólogo americano Branley Allan Branson, a velocidade “recorde” já registrada em pesquisas, por uma lesma, é de 16,5 centímetros por minuto.

Disponível em: http://mundoestranho.abril.com.br. Acesso em: 6 jul. 2015.

Para uma reportagem, dispondo das velocidades recordes da tartaruga e do caramujo em metro por segundo, se faz necessário saber o fator de conversão da velocidade recorde da lesma para metro por segundo para divulgar uma comparação.

Com base nas informações, o fator de conversão da velocidade recorde da lesma para metro por segundo é

A
10-2 × 60−2
B
10-2 × 60−1
C
10-2 × 60
D
10-3 × 60−1
E
10-3 × 60