Questõesde UFU-MG sobre Física

1
1
Foram encontradas 57 questões
ce4703e0-af
UFU-MG 2010 - Física - Eletrodinâmica - Corrente Elétrica, Resistores e Potência Elétrica, Associação de Resistores, Circuitos Elétricos e Leis de Kirchhoff, Eletricidade

Considere um circuito elétrico formado por uma fonte ideal com força eletromotriz (fem) de 18 V e três resistências R1 =2,00Ω, R2 =5,00Ω e R3 =1,25Ω, como mostra a figura abaixo.



A corrente no circuito é:


Glossário de Matemática

sen 30° =5       cos 30°= √3/2 ≈0,9       sen 60° = √3/2 ≈0,9

sen 45°= √2/2 ≈0,7      cos 45°= √2/2 ≈0,7    cos 60° = 0,5


Deve-se considerar para todos os problemas

c = 3,0 x 108 m/s      vsom = 340m/s    g = 10m /s2     G = 6 x 10-11 N.m2 /Kg2

R = 0,08atm.L / mol.K    h = 6 x 10-34 J.s    1eV = 1,6 x 10-19 J

A
6,00 A
B
12,00 A
C
2,20 A
D
4,00 A
ce51565c-af
UFU-MG 2010 - Física - Campo e Força Magnética, Magnetismo

Considere um fio condutor suspenso por uma mola de plástico na presença de um campo magnético uniforme que sai da página, como mostrado na figura abaixo. O módulo do campo magnético é B=3T. O fio pesa 180 g e seu comprimento é 20 cm.



Considerando g=10m/s, o valor e o sentido da corrente que deve passar pelo fio para remover a tensão da mola é:


Glossário de Matemática

sen 30° =5       cos 30°= √3/2 ≈0,9       sen 60° = √3/2 ≈0,9

sen 45°= √2/2 ≈0,7      cos 45°= √2/2 ≈0,7    cos 60° = 0,5


Deve-se considerar para todos os problemas

c = 3,0 x 108 m/s      vsom = 340m/s    g = 10m /s2     G = 6 x 10-11 N.m2 /Kg2

R = 0,08atm.L / mol.K    h = 6 x 10-34 J.s    1eV = 1,6 x 10-19 J

A
3 A da direita para a esquerda.
B
7 A da direita para a esquerda.
C
0,5 A da esquerda para a direita.
D
2,5 A da esquerda para a direita.
ce5bea6d-af
UFU-MG 2010 - Física - Oscilação e Ondas, Ondas e Propriedades Ondulatórias

Em 1926, Louis de Broglie formula, na sua tese de doutorado, que as partículas deveriam se comportar como ondas, da mesma forma que a luz, considerada primeiramente como de caráter ondulatório, deveria ser descrita como partícula para explicar o comportamento do espectro de radiação de um corpo negro. A hipótese de de Broglie foi confirmada experimentalmente de forma independente por George P. Thomson e Joseph Davisson, em experiências realizadas usando elétrons em que a difração de partículas foi observada pela primeira vez. Nestes experimentos, as partículas incidem em uma rede de difração, que consiste de uma série de fendas do mesmo comprimento localizadas a uma distância igualmente espaçada, conhecida como espaçamento da rede. O comprimento da fenda deve ser comparável com o comprimento da onda incidente.

Na tabela 1, são reportados alguns comprimentos de onda, λ, de objetos materiais, todos se movendo com velocidade igual a 100 m/s.




Na tabela 2, são reportados o valor de algumas distâncias na natureza.



Analise as seguintes afirmações sobre os dados das tabelas.


I - O comprimento de onda é inversamente proporcional ao momento linear da partícula, com uma constante de proporcionalidade da ordem de 10-34.

II - Pode-se usar um arranjo de átomos de hidrogênio para estudar a difração de bolas de basebol.

III - Lâminas de ouro podem ser usadas como redes de difração em experimentos de difração de elétrons.


Usando a tabela e as informações do enunciado, assinale a alternativa que apresenta as afirmações corretas.


Glossário de Matemática

sen 30° =5       cos 30°= √3/2 ≈0,9       sen 60° = √3/2 ≈0,9

sen 45°= √2/2 ≈0,7      cos 45°= √2/2 ≈0,7    cos 60° = 0,5


Deve-se considerar para todos os problemas

c = 3,0 x 108 m/s      vsom = 340m/s    g = 10m /s2     G = 6 x 10-11 N.m2 /Kg2

R = 0,08atm.L / mol.K    h = 6 x 10-34 J.s    1eV = 1,6 x 10-19 J

A
Apenas I.
B
Apenas I e III.
C
Apenas I e II.
D
Apenas III.
ce31c32a-af
UFU-MG 2010 - Física - Oscilação e Ondas, Ondas e Propriedades Ondulatórias

O efeito Doppler recebe esse nome em homenagem ao físico austríaco Johann Christian Doppler que o propôs em 1842. As primeiras medidas experimentais do efeito foram realizadas por Buys Ballot, na Holanda, usando uma locomotiva que puxava um vagão aberto com vários trompetistas que tocavam uma nota bem definida.

Considere uma locomotiva com um único trompetista movendo-se sobre um trilho horizontal da direita para a esquerda com velocidade constante. O trompetista toca uma nota com frequência única f. No instante desenhado na figura, cada um dos três observadores detecta uma frequência em sua posição. Nesse instante, a locomotiva passa justamente pela frente do observador D2




Analise as afirmações abaixo sobre os resultados da experiência.


I - O som percebido pelo detector D1 é mais agudo que o som emitido e escutado pelo trompetista.

II - A frequência medida pelo detector D1 é menor que f.

III - As frequências detectadas por D1 e D2 são iguais e maiores que f, respectivamente.

IV - A frequência detectada por D2 é maior que a detectada por D3 .


Assinale a alternativa que apresenta as afirmativas corretas.


Glossário de Matemática

sen 30° =5       cos 30°= √3/2 ≈0,9       sen 60° = √3/2 ≈0,9

sen 45°= √2/2 ≈0,7      cos 45°= √2/2 ≈0,7    cos 60° = 0,5


Deve-se considerar para todos os problemas

c = 3,0 x 108 m/s      vsom = 340m/s    g = 10m /s2     G = 6 x 10-11 N.m2 /Kg2

R = 0,08atm.L / mol.K    h = 6 x 10-34 J.s    1eV = 1,6 x 10-19 J

A
Apenas I e IV.
B
Apenas II.
C
Apenas II e IV.
D
Apenas III.
ce3baa03-af
UFU-MG 2010 - Física - Ótica, Refração

A tabela abaixo mostra o valor aproximado dos índices de refração de alguns meios, medidos em condições normais de temperatura e pressão, para um feixe de luz incidente com comprimento de onda de 600 nm


                         


O raio de luz que se propaga inicialmente no diamante incide com um ângulo θi =30° em um meio desconhecido, sendo o ângulo de refração θr =45° .

O meio desconhecido é:


Glossário de Matemática

sen 30° =5       cos 30°= √3/2 ≈0,9       sen 60° = √3/2 ≈0,9

sen 45°= √2/2 ≈0,7      cos 45°= √2/2 ≈0,7    cos 60° = 0,5


Deve-se considerar para todos os problemas

c = 3,0 x 108 m/s      vsom = 340m/s    g = 10m /s2     G = 6 x 10-11 N.m2 /Kg2

R = 0,08atm.L / mol.K    h = 6 x 10-34 J.s    1eV = 1,6 x 10-19 J

A
Vidro de altíssima dispersão
B
Ar
C
Água (20º C)
D
Safira
ce287bf3-af
UFU-MG 2010 - Física - Física Térmica - Termologia, Gás Ideal

Certa quantidade de gás ideal ocupa inicialmente um volume V0 , à pressão p0 e temperatura T0 . Esse gás se expande à temperatura constante e realiza trabalho sobre o sistema, o qual é representado nos gráficos pela área sob a curva.


Assinale a alternativa que melhor representa a variação de energia. 


Glossário de Matemática

sen 30° =5       cos 30°= √3/2 ≈0,9       sen 60° = √3/2 ≈0,9

sen 45°= √2/2 ≈0,7      cos 45°= √2/2 ≈0,7    cos 60° = 0,5


Deve-se considerar para todos os problemas

c = 3,0 x 108 m/s      vsom = 340m/s    g = 10m /s2     G = 6 x 10-11 N.m2 /Kg2

R = 0,08atm.L / mol.K    h = 6 x 10-34 J.s    1eV = 1,6 x 10-19 J

A

B

C

D

ce03938a-af
UFU-MG 2010 - Física - Lançamento Horizontal, Cinemática

Uma pedra é lançada do solo com velocidade de 36 km/h fazendo um ângulo de 45° com a horizontal. Considerando g = 10m/s2 e desprezando a resistência do ar, analise as afirmações abaixo.


I - A pedra atinge a altura máxima de 2,5m.

II - A pedra retorna ao solo ao percorrer a distância de 10m na horizontal.

III - No ponto mais alto da trajetória, a componente horizontal da velocidade é nula.


Usando as informações do enunciado, assinale a alternativa correta.


Glossário de Matemática

sen 30° =5       cos 30°= √3/2 ≈0,9       sen 60° = √3/2 ≈0,9

sen 45°= √2/2 ≈0,7      cos 45°= √2/2 ≈0,7    cos 60° = 0,5


Deve-se considerar para todos os problemas

c = 3,0 x 108 m/s      vsom = 340m/s    g = 10m /s2     G = 6 x 10-11 N.m2 /Kg2

R = 0,08atm.L / mol.K    h = 6 x 10-34 J.s    1eV = 1,6 x 10-19 J

A
Apenas I é verdadeira.
B
Apenas I e II são verdadeiras.
C
Apenas II e III são verdadeiras.
D
Apenas II é verdadeira.
ce150415-af
UFU-MG 2010 - Física - Oscilação e Ondas, Dinâmica, Leis de Newton, Trabalho e Energia, Impulso e Quantidade de Movimento, Movimento Harmônico

Um canhão construído com uma mola de constante elástica 500 N/m possui em seu interior um projétil de 2 kg a ser lançado, como mostra a figura abaixo.



Antes do lançamento do projétil, a mola do canhão foi comprimida em 1m da sua posição de equilíbrio. Tratando o projétil como um objeto puntiforme e desconsiderando os mecanismos de dissipação, analise as afirmações abaixo.


Considere g=10 m/s2 .


I - Ao retornar ao solo, a energia cinética do projétil a 1,5 m do solo é 250 J.

II - A velocidade do projétil, ao atingir a altura de 9,0 m, é de 10 m/s.

III - O projétil possui apenas energia potencial ao atingir sua altura máxima.

IV - Por meio do teorema da conservação da energia, é correto afirmar que a energia cinética do projétil, ao atingir o solo, é nula, pois sua velocidade inicial é nula.


Usando as informações do enunciado, assinale a alternativa que apresenta as afirmativas corretas.


Glossário de Matemática

sen 30° =5       cos 30°= √3/2 ≈0,9       sen 60° = √3/2 ≈0,9

sen 45°= √2/2 ≈0,7      cos 45°= √2/2 ≈0,7    cos 60° = 0,5


Deve-se considerar para todos os problemas

c = 3,0 x 108 m/s      vsom = 340m/s    g = 10m /s2     G = 6 x 10-11 N.m2 /Kg2

R = 0,08atm.L / mol.K    h = 6 x 10-34 J.s    1eV = 1,6 x 10-19 J

A
Apenas II e III.
B
Apenas I.
C
Apenas I e II.
D
Apenas IV.
ce206e3a-af
UFU-MG 2010 - Física - Calorimetria, Física Térmica - Termologia

Para tentar descobrir com qual material sólido estava lidando, um cientista realizou a seguinte experiência: em um calorímetro de madeira de 5 kg e com paredes adiabáticas foram colocados 3 kg de água. Após certo tempo, a temperatura medida foi de 10° C, a qual se manteve estabilizada. Então, o cientista retirou de um forno a 540° C uma amostra desconhecida de 1,25 kg e a colocou dentro do calorímetro. Após um tempo suficientemente longo, o cientista percebeu que a temperatura do calorímetro marcava 30° C e não se alterava (ver figura abaixo).




Material    Calor específico

                      (cal/g °C)

Água                  1,00           

 Alumínio             0,22            

 Chumbo              0,12            

    Ferro                   0,11              

Madeira               0,42          

Vidro                    0,16          


Sem considerar as imperfeições dos aparatos experimentais e do procedimento utilizado pelo cientista, assinale a alternativa que indica qual elemento da tabela acima o cientista introduziu no calorímetro.


Glossário de Matemática

sen 30° =5       cos 30°= √3/2 ≈0,9       sen 60° = √3/2 ≈0,9

sen 45°= √2/2 ≈0,7      cos 45°= √2/2 ≈0,7    cos 60° = 0,5


Deve-se considerar para todos os problemas

c = 3,0 x 108 m/s      vsom = 340m/s    g = 10m /s2     G = 6 x 10-11 N.m2 /Kg2

R = 0,08atm.L / mol.K    h = 6 x 10-34 J.s    1eV = 1,6 x 10-19 J

A
Chumbo
B
Alumínio
C
Ferro
D
Vidro
ce0dae4a-af
UFU-MG 2010 - Física - Cinemática, Lançamento Vertical

Um objeto é lançado verticalmente na atmosfera terrestre. A velocidade do objeto, a aceleração gravitacional e a resistência do ar estão representadas pelos vetores respectivamente.


Considerando apenas estas três grandezas físicas no movimento vertical do objeto, assinale a alternativa correta.


Glossário de Matemática

sen 30° =5       cos 30°= √3/2 ≈0,9       sen 60° = √3/2 ≈0,9

sen 45°= √2/2 ≈0,7      cos 45°= √2/2 ≈0,7    cos 60° = 0,5


Deve-se considerar para todos os problemas

c = 3,0 x 108 m/s      vsom = 340m/s    g = 10m /s2     G = 6 x 10-11 N.m2 /Kg2

R = 0,08atm.L / mol.K    h = 6 x 10-34 J.s    1eV = 1,6 x 10-19 J

A

B

C

D

dc17bea5-a6
UFU-MG 2017 - Física - Oscilação e Ondas, Ondas e Propriedades Ondulatórias

As ondas eletromagnéticas conhecidas como micro-ondas são transversais, estão em uma faixa de frequência que vai de aproximadamente 0,3 GHz até cerca de 300 GHz, e são utilizadas em diversos aparelhos de uso cotidiano.

Assinale a alternativa que apresenta o aparelho que funciona utilizando micro-ondas.

A
Controle remoto do televisor
B
Telefone celular
C
Tomógrafo computadorizado
D
Rádio de ondas curtas
dc145a32-a6
UFU-MG 2017 - Física - Indução e Transformadores Elétricos, Magnetismo

O anel saltante ou anel de Thomson é uma interessante demonstração dos efeitos eletromagnéticos. Ele consiste em uma bobina, um anel metálico, normalmente de alumínio, e um núcleo metálico que atravessa a bobina e o anel. Quando a bobina é ligada a uma tomada de corrente alternada, o anel de alumínio salta e fica levitando em uma altura que pode ser considerada constante. A figura mostra o dispositivo. Um dos fatos que contribuem para a levitação do anel metálico, apesar de não ser o único, é a fonte de corrente elétrica ser alternada, pois o anel não levitaria se ela fosse contínua.



A força sobre o anel metálico e sua consequente levitação devem-se ao fato de a bobina percorrida por corrente elétrica alternada gerar

A
uma polarização elétrica variável em função do tempo no núcleo metálico que induz uma carga elétrica no anel metálico.
B
um campo elétrico constante em função do tempo no núcleo metálico que induz uma diferença de potencial no anel metálico.
C
uma polarização magnética constante em função do tempo no núcleo metálico que induz um polo magnético no anel metálico.
D
um campo magnético variável em função do tempo no núcleo metálico que induz uma corrente elétrica no anel metálico.
dc06c3b9-a6
UFU-MG 2017 - Física - Plano Inclinado e Atrito, Dinâmica, Movimento Retilíneo Uniformemente Variado, Cinemática, Impulso e Quantidade de Movimento, Movimento Retilíneo Uniforme

Ao se projetar uma rodovia e seu sistema de sinalização, é preciso considerar variáveis que podem interferir na distância mínima necessária para um veículo parar, por exemplo. Considere uma situação em que um carro trafega a uma velocidade constante por uma via plana e horizontal, com determinado coeficiente de atrito estático e dinâmico e que, a partir de um determinado ponto, aciona os freios, desacelerando uniformemente até parar, sem que, para isso, tenha havido deslizamento dos pneus do veículo. Desconsidere as perdas pelas resistência do ar e o atrito entre os componentes mecânicos do veículo. A respeito da distância mínima de frenagem, nas situações descritas, são feitas as seguintes afirmações:

I. Ela aumenta proporcionalmente à massa do carro.
II. Ela é inversamente proporcional ao coeficiente de atrito estático.
III. Ela não se relaciona com a aceleração da gravidade local.
IV. Ela é diretamente proporcional ao quadrado da velocidade inicial do carro.

Assinale a alternativa que apresenta apenas afirmativas corretas.

A
I e II
B
II e IV
C
III e IV
D
I e III
dc0d4e8d-a6
UFU-MG 2017 - Física - Oscilação e Ondas, Ondas e Propriedades Ondulatórias

A natureza da luz é um assunto que tem estado presente nas discussões de cientistas e filósofos há séculos, principalmente a partir da possibilidade de aplicação de fenômenos luminosos por comportamentos tanto ondulatórios quanto corpusculares. Segundo o princípio da complementaridade, proposto por Niels Bohr em 1928, a descrição ondulatória da luz é complementar à descrição corpuscular, mas não se usam as duas descrições simultaneamente para descrever um determinado fenômeno luminoso. Desse modo, fenômenos luminosos envolvendo a propagação, a emissão e a absorção da luz são explicados ora considerando a natureza ondulatória, ora considerando a natureza corpuscular.

Assinale a alternativa que apresenta um fenômeno luminoso mais bem explicado, considerando-se a natureza corpuscular da luz.

A
Espalhamento da luz ao atravessar uma fenda estreita.
B
Interferência luminosa quando feixes luminosos de fontes diferentes se encontram.
C
Mudança de direção de propagação da luz ao passar de um meio transparente para outro.
D
Absorção de luz com emissão de elétrons por uma placa metálica.
dc0a104b-a6
UFU-MG 2017 - Física - Óptica Geométrica, Ótica, Reflexão

João, representado pela letra J, entra em uma sala retangular, onde duas paredes são revestidas por espelhos planos. Ele se posiciona na bissetriz do ângulo reto formato entre os dois espelhos. Como se configuram o conjunto das imagens de João em relação aos espelhos e sua posição na sala?

A


B


C


D


dc0339fc-a6
UFU-MG 2017 - Física - MCU - Movimento Circular Uniforme, Cinemática

Ainda que tenhamos a sensação de que estamos estáticos sobre a Terra, na verdade, se tomarmos como referência um observador parado em relação às estrelas fixas e externo ao nosso planeta, ele terá mais clareza de que estamos em movimento, por exemplo, rotacionando junto com a Terra em torno de seu eixo imaginário. Se consideramos duas pessoas (A e B), uma deles localizada em Ottawa (A), Canadá, (latitude 45° Norte) e a outra em Caracas (B), Venezuela, (latitude 10° Norte), qual a relação entre a velocidade angular média (ω) e velocidade escalar média (v) dessas duas pessoas, quando analisadas sob a perspectiva do referido observador?

A
ωA = ωB e vA = vB
B
ωA < ωB e vA < vB
C
ωA = ωB e vA < vB
D
ωA > ωB e vA = vB
dc10e948-a6
UFU-MG 2017 - Física - Estática e Hidrostática, Pressão, Física Térmica - Termologia, Termologia/Termometria, Hidrostática

Um estudante monta um dispositivo termométrico utilizando uma câmara, contendo um gás, e um tubo capilar, em formato de “U”, cheio de mercúrio, conforme mostra a figura. O tubo é aberto em uma das suas extremidades, que está em contato com a atmosfera.



Inicialmente a câmara é imersa em um recipiente contendo água e gelo em fusão, sendo a medida da altura h da coluna de mercúrio (figura) de 2cm. Em um segundo momento, a câmara é imersa em água em ebulição e a medida da altura h da coluna de mercúrio passa a ser de 27cm. O estudante, a partir dos dados obtidos, monta uma equação que permite determinar a temperatura do gás no interior da câmara (θ), em graus Celsius, a partir da altura h em centímetros. (Considere a temperatura de fusão do gelo 0°C e a de ebulição da água 100°C).

Assinale a alternativa que apresenta a equação criada pelo estudante.

A

θ = 2h

B
θ = 27h/2
C
θ = 4h - 8
D
θ = 5h2 - 20
6a01f5ea-a5
UFU-MG 2018 - Física - Óptica Geométrica, Ótica

Eclipses são fenômenos naturais, nos quais um corpo extenso como a Lua ou a Terra bloqueia a passagem dos raios solares quando Sol, Terra e Lua se encontram alinhados espacialmente. No exato momento de um eclipse total da Lua, uma pessoa que estivesse em nosso satélite natural, justamente na face voltada para nosso planeta, presenciaria de lá, o que, na Terra, seria

A
um eclipse total do Sol.
B
um eclipse parcial da Lua.
C
um eclipse parcial do Sol.
D
uma visão do Sol sem eclipse.
69fa9302-a5
UFU-MG 2018 - Física - Grandezas e Unidades, Conteúdos Básicos

Em 2014, um importante trabalho publicado revelou novos dados sobre a estrutura em larga escala do universo, indicando que nossa galáxia faz parte de um superaglomerado chamado Laniakea, com massa de cerca de 1017 estrelas como o sol, que tem 2 x 1030Kg de massa, aproximadamente. Em 2015, o Prêmio Nobel de Física foi concedido a cientistas que descobriram uma das menores massas, 4 x 10-33g, a de um neutrino, um tipo de partícula elementar.


Em ciência, uma maneira de se trabalhar com valores muito grandes ou muito pequenos é a ordem de grandeza. Com base nas duas descobertas apontadas, quantas vezes a ordem de grandeza da massa de Laniakea é maior do que a de um neutrino? 

A
1082 .
B
1079.
C
1049 .
D
1062 .
69fe54ee-a5
UFU-MG 2018 - Física - Gravitação Universal, Força Gravitacional e Satélites

Muitas estrelas, em sua fase final de existência, começam a colapsar e a diminuírem seu diâmetro, ainda que preservem sua massa. Imagine que fosse possível você viajar até uma estrela em sua fase final de existência, usando uma espaçonave preparada para isso.


Se na superfície de uma estrela nessas condições seu peso fosse P, o que ocorreria com ele à medida que ela colapsa?

A
Diminuiria, conforme a massa total da pessoa fosse contraindo.
B
Aumentaria, conforme o inverso de sua distância ao centro da estrela.
C
Diminuiria, conforme o volume da estrela fosse contraindo.
D
Aumentaria, conforme o quadrado do inverso de sua distância ao centro da estrela.