Questõessobre Magnetismo

1
1
Foram encontradas 366 questões
68c714fc-fd
UFT 2018 - Física - Eletrodinâmica - Corrente Elétrica, Campo e Força Magnética, Magnetismo, Eletricidade

Duas bobinas circulares idênticas são montadas paralelas, uma em relação à outra, sendo separadas por uma distância igual ao raio de uma delas. Uma das bobinas está com os terminais ligados a uma fonte de tensão, onde a corrente varia conforme o gráfico mostrado na figura que segue; já a outra encontra-se com os terminais ligados a um galvanômetro. Portanto, é CORRETO afirmar que:


A
devido ao comportamento da corrente entre os instantes 7 e 10 s, o campo elétrico na bobina ligada à fonte será constante e nulo.
B
devido ao comportamento da corrente entre os instantes 5 e 7 s, a tensão induzida na bobina ligada ao galvanômetro será constante e nula.
C
devido ao comportamento da corrente entre os instantes 11 e 13 s, o campo magnético criado pela bobina ligada à fonte será constante e nulo.
D
devido ao comportamento da corrente entre os instantes 1 e 4s, a resistência elétrica na bobina ligada ao galvanômetro será constante e nula.
2b05577c-ff
Unichristus 2018 - Física - Eletrodinâmica - Corrente Elétrica, Campo e Força Magnética, Magnetismo Elementar, Magnetismo, Eletrostática e Lei de Coulomb. Força Elétrica., Eletricidade

As ondas eletromagnéticas são caracterizadas por interações entre campos elétricos e magnéticos ortogonais variáveis com o tempo. É um exemplo desse tipo de ondas as

A
ondas do mar.
B
ondas sonoras.
C
micro-ondas.
D
ondas ultrassônicas.
E
ondas infrassônicas.
819d6a01-01
Unichristus 2015 - Física - Eletrodinâmica - Corrente Elétrica, Cargas Elétricas e Eletrização, Campo e Força Magnética, Magnetismo Elementar, Magnetismo, Eletrostática e Lei de Coulomb. Força Elétrica., Eletricidade

O QUE É O VENTO SOLAR?

Nada menos que 1 milhão de toneladas de matéria o Sol ejeta a cada segundo. Ela é formada por elétrons e núcleos de átomos de elementos abundantes na estrela, como hidrogênio e hélio. Acelerados pelo calor solar, eles escapam do seu campo gravitacional. “Esse turbilhão tem um campo magnético próprio que interage com o da Terra e, assim, afeta o nosso planeta”, diz o astrônomo Enos Picazzio, da USP.

Disponível em: http://mundoestranho.abril.com.br/ Acesso em: 20 de agosto de 2015.


Um desses elétrons que possui a carga elementar de 1,6 ˑ 10–19 C penetra no campo magnético do planeta cuja magnitude vale 1,2 ˑ 10–7 T. Desprezando os efeitos gravitacionais, qual é o raio da trajetória descrita por esse elétron de massa 9,10–31 kg, sabendo que tal partícula penetra perpendicularmente o campo magnético terrestre com uma velocidade de módulo 8 ˑ 106 m/s?

A
ˑ225 m.
B
300 m.
C
375 m.
D
500 m.
E
625 m.
81914850-01
Unichristus 2015 - Física - Eletrodinâmica - Corrente Elétrica, Campo e Força Magnética, Magnetismo, Eletricidade

A descoberta de que a Terra possui um campo magnético, comportando-se como um grande ímã, ocorreu em 1600, com trabalhos do físico e médico inglês William Gilbert. A origem desse campo magnético e as suas consequências para a Terra ainda são objeto de estudo, mas sua importância é incontestável. Foi ele que permitiu as grandes navegações, pelo uso da bússola (os modernos navios usam GPS). É ele também que nos protege das partículas carregadas de eletromagnetismo provenientes do Sol (vento solar), a 700 km/s, e de outros pontos da galáxia (além de afetar seriamente as transmissões de rádio e televisão, há evidências de que as tormentas magnéticas aumentam as ocorrências de ataques cardíacos).

Fonte: http://www.cprm.gov.br/


Uma linha de transmissão que chega à cidade de Fortaleza é percorrida por uma corrente de 1000 Ampères. Em relação ao campo magnético terrestre, a linha de transmissão está com uma inclinação de 30° . Sabendo que o campo magnético terrestre nessa localização do planeta assume a intensidade de 4 mT, a alternativa que determina a força magnética a que um trecho de 80 metros dessa linha de transmissão estará submetido é

A
80 Newtons.
B
120 Newtons.
C
160 Newtons.
D
200 Newtons.
E
240 Newtons.
8172746d-01
Unichristus 2015 - Física - Eletrodinâmica - Corrente Elétrica, Resistores e Potência Elétrica, Indução e Transformadores Elétricos, Campo e Força Magnética, Magnetismo, Eletricidade

Em um automóvel, existe um dispositivo que tem uma função semelhante à de um gerador – o alternador. Tal componente funciona através do princípio físico que tem como base a indução eletromagnética com o objetivo final, no caso do automóvel, de carregar a bateria. O processo de carregamento da bateria do automóvel pode ser explicado, pois a rotação do eixo do alternador através de uma correia presa a uma polia interligada ao eixo do motor (virabrequim)

A
causará a variação do fluxo elétrico no interior de um circuito fechado que, por conseguinte, gerará uma corrente que carregará a bateria.
B
causará a variação do fluxo magnético no interior de um circuito fechado que, por conseguinte, gerará uma corrente que carregará a bateria.
C
manterá o fluxo magnético constante no interior de um circuito fechado que, por conseguinte, gerará uma corrente que carregará a bateria.
D
manterá o fluxo elétrico constante no interior de um circuito fechado que, por conseguinte, gerará uma corrente que carregará a bateria.
E
causará a variação do fluxo de corrente no interior de um circuito fechado que, por conseguinte, gerará uma diferença de potencial que carregará a bateria.
eb595ba5-ff
Unichristus 2016 - Física - Eletrodinâmica - Corrente Elétrica, Indução e Transformadores Elétricos, Cargas Elétricas e Eletrização, Magnetismo, Eletrostática e Lei de Coulomb. Força Elétrica., Eletricidade

Sempre quando temos uma diferença de potencial muito grande entre nuvens ou entre nuvens e terra, podemos ter uma descarga elétrica. É justamente a essa descarga elétrica que damos o nome de raio. Dentro das nuvens, ocorrem as chamadas correntes de convecção. Muitas vezes, essas correntes de ar são tão fortes que as colisões entre o granizo e os cristais de gelo dentro da nuvem eletrizam os cristais com carga positiva e o granizo com carga negativa.

Disponível em:<https://www.infoenem.com.br/> .


Caso essa eletrização seja muito alta, ocorre a indução de uma carga positiva na superfície da Terra, estabelecendo um campo elétrico. Assim, se o campo se tornar muito intenso,

A
poderá ser superada a rigidez dielétrica do ar, ocorrendo a descarga atmosférica – o raio.
B
poderá ser superada a rigidez condutora do ar, ocorrendo a descarga atmosférica – o raio.
C
poderá ser superada a permissividade magnética do ar, ocorrendo a descarga atmosférica – o raio.
D
poderá ser superada a permeabilidade magnética do ar, ocorrendo a descarga atmosférica – o raio.
E
poderá ser superada a resistividade elétrica do ar, ocorrendo a descarga atmosférica – o raio.
e61b2753-01
UNICENTRO 2018 - Física - Eletrodinâmica - Corrente Elétrica, Indução e Transformadores Elétricos, Magnetismo, Eletrostática e Lei de Coulomb. Força Elétrica., Eletricidade

Considerem-se duas bobinas feitas com fios isolados eletricamente e enroladas em núcleos de ferro idênticos, conforme a figura. A partir da análise da figura e com base nos conhecimentos sobre eletromagnetismo, assinale com V as afirmativas verdadeiras e com F, as falsas.


() Os núcleos das bobinas repelem-se mutuamente.


( ) Os núcleos das bobinas atraem-se, obedecendo a 3a lei de Newton.


( ) O campo magnético resultante em cada núcleo tem a mesma intensidade.


A alternativa que contém a sequência correta, de cima para baixo, é a

A
V V F
B
F F V
C
V F V
D
F V F
f8758b86-fc
FUVEST 2019 - Física - Cargas Elétricas e Eletrização, Campo e Força Magnética, Magnetismo, Eletrostática e Lei de Coulomb. Força Elétrica., Eletricidade

Um solenoide muito longo é percorrido por uma corrente elétrica I,conforme mostra a figura 1.



Em um determinado instante, uma partícula de carga q positiva desloca‐se com velocidade instantânea perpendicular ao eixo do solenoide, na presença de um campo elétrico na direção do eixo do solenoide. A figura 2 ilustra essa situação, em uma seção reta definida por um plano que contém o eixo do solenoide.



O diagrama que representa corretamente asforças elétrica e magnética atuando sobre a partícula é:

A

B

C

D

E

fa1a2a04-00
UEMG 2019 - Física - Eletrodinâmica - Corrente Elétrica, Resistores e Potência Elétrica, Indução e Transformadores Elétricos, Magnetismo, Eletricidade

Existem diferentes opções de produção de energia elétrica, e todas elas apresentam vantagens e desvantagens. Relacione, a seguir, as colunas que representam a forma de produção de energia elétrica com o impacto ambiental que ela provoca:


Forma de produção:

1. Usinas hidrelétricas.

2. Usinas termoelétricas.

3. Baterias.

4. Usinas termonucleares.


Impacto ambiental:

( ) Gases na atmosfera que aumentam o efeito estufa.

( ) Contaminação do solo, do ar e da água por radionuclídeos.

( ) Degradação do solo por materiais pesados.

( ) Alagamento de grandes áreas e mudança do ecossistema da região.


A seqüência correta dessa associação é:

A
3, 4, 2, 1.
B
2, 4, 3, 1.
C
1, 4, 2, 3.
D
1, 3, 4, 2.
acf9767f-fd
ENCCEJA 2018 - Física - Oscilação e Ondas, Eletrodinâmica - Corrente Elétrica, Indução e Transformadores Elétricos, Dinâmica, Trabalho e Energia, Magnetismo, Eletricidade, Acústica

Pesquisadores anunciaram ter utilizado nanotecnologia num protótipo capaz de recarregar celulares com a energia da vibração gerada pelo barulho do ambiente. O equipamento, do tamanho de um celular convencional, utiliza nanotubos de óxido de zinco que geram eletricidade ao serem distendidos ou comprimidos pelo barulho de conversas, de música ou de trânsito.

Disponível em: www.pagina22.com.br. Acesso em: 14 ago. 2015 (adaptado).


O equipamento em questão é capaz de obter energia elétrica através de que tipo de onda?

A
Microondas.
B
Ondas de rádio.
C
Sonoras.
D
Infravermelho.
20ed82a1-00
UNICENTRO 2017 - Física - Eletrodinâmica - Corrente Elétrica, Campo e Força Magnética, Magnetismo, Eletricidade

Um solenoide de 0,5 metro de comprimento foi construído enrolando-se uma certa quantidade de espiras. Quando se faz passar uma corrente de 5 A pelo solenoide, é gerado um campo magnético de intensidade 2π . 10-4 T. Nestas situação, o número de espiras será:
(dado: µ0 = 4π . 10-7 T.m/A)

A
5 espiras
B
25 espiras
C
500 espiras
D
50 espiras
24f5c803-e9
UFTM 2013 - Física - Indução e Transformadores Elétricos, Cargas Elétricas e Eletrização, Campo e Força Magnética, Magnetismo, Eletrostática e Lei de Coulomb. Força Elétrica., Eletricidade

Uma espira metálica é posicionada horizontalmente e em repouso em relação à Terra, de modo que o eixo vertical y, indicado na figura, seja perpendicular ao plano que a contém e passe por seu centro C. Um ímã cilíndrico está inicialmente parado em relação à espira, com seu eixo coincidindo com o mesmo eixo y.


Surgirá uma corrente elétrica induzida na espira caso ela

A
mova-se com velocidade constante de 2 m/s e o ímã mova-se com velocidade constante de 1 m/s, ambos na direção e no sentido do eixo y.
B
gire em torno do eixo y num determinado sentido e o ímã gire no sentido contrário, em torno do mesmo eixo.
C
e o ímã comecem a se mover simultaneamente e a partir do repouso, com mesma aceleração constante de 0,5 m/s2 , na direção e no sentido do eixo y.
D
gire em torno do eixo y e o ímã permaneça parado em relação a ele.
E
e o ímã movam-se com a mesma velocidade constante de 1 m/s, na direção e no sentido do eixo y.
18bb8757-fd
UNICENTRO 2017 - Física - Campo e Força Magnética, Magnetismo Elementar, Magnetismo

Ao aproximar-se um ímã permanente de uma barra, observa-se que a barra se transforma em um ímã. Isto acontece porque:

A
A barra possui elétrons livres
B
A barra sofreu oxidação
C
A barra sofreu indução eletrostática
D
A barra perdeu elétrons
E
A barra é de material ferromagnético
53f3fb77-fd
UNICENTRO 2016 - Física - Eletrodinâmica - Corrente Elétrica, Indução e Transformadores Elétricos, Campo e Força Magnética, Magnetismo, Eletricidade

O gráfico mostra como varia no tempo o fluxo magnético através de cada espira de uma bobina de 300 espiras, enroladas próximas umas das outras, garantindo que todas são atravessadas pelo mesmo fluxo.


Nessas condições, o módulo da força eletromotriz induzida na bobina no intervalo entre 0ms e 0,6ms, em V, é igual a

A
4,0
B
4,5
C
5,0
D
5,5
E
6,0
a8b2195f-fe
UNICENTRO 2019 - Física - Cargas Elétricas e Eletrização, Campo e Força Magnética, Magnetismo, Eletricidade

Um elétron penetra com velocidade horizontal em um campo magnético de indução vertical e uniforme.
Com base nessa informação, pode-se concluir que a trajetória do elétron é

A
circular.
B
hiperbólica.
C
parabólica.
D
retilínea.
E
elíptica.
c7062099-fc
FUVEST 2016 - Física - Eletrodinâmica - Corrente Elétrica, Indução e Transformadores Elétricos, Campo e Força Magnética, Magnetismo, Eletricidade

As figuras representam arranjos de fios longos, retilíneos, paralelos e percorridos por correntes elétricas de mesma intensidade. Os fios estão orientados perpendicularmente ao plano desta página e dispostos segundo os vértices de um quadrado. A única diferença entre os arranjos está no sentido das correntes: os fios são percorridos por correntes que entram (⊗) ou saem (ʘ) do plano da página.



O campo magnético total é nulo no centro do quadrado apenas em

A
I.
B
II.
C
I e II.
D
II e III.
E
III e IV.
48f245ed-f9
Univille 2017 - Física - Oscilação e Ondas, Campo e Força Magnética, Ondas e Propriedades Ondulatórias, Magnetismo

Considere o caso abaixo e marque com V as proposições verdadeiras e com F as falsas.


Ao final do século 19, o Professor físico alemão, Wilhelm Conrad Röntgen, quando trabalhava em seu laboratório na Baviera, sul da Alemanha, estudando o tubo de raios catódicos, descobriu acidentalmente os raios X. Ciente da importância de sua descoberta, que ele chamou de raios X por não saber realmente do que se tratava, sendo X a incógnita da matemá-tica, Em dezembro de 1895 publicou o artigo o "EINE NEURE ART VON STRAHLEN" (sobre uma nova espécie de raios), onde descreve suas experiências e observações e relata várias proposições.

( ) Os raios X atravessam corpos opacos à luz.

( ) Provocam fluorescência em certos materiais.

( ) Não são defletidos por campos magnéticos.

( ) Os raios X propagam-se em linha reta.

( ) Os raios X propagam-se em uma única direção.


A sequência correta, de cima para baixo, é:

A
F - F - F - V - V
B
V - F - V – F - V
C
F - V - F - V - V
D
V - V - V - V - F
6b8810e1-fc
ENCCEJA 2018 - Física - Plano Inclinado e Atrito, Dinâmica, Campo e Força Magnética, Magnetismo

Uma aplicação dos eletroímãs supercondutores é no trem de transporte levitado magneticamente, ou maglev. Esse trem usa o campo magnético gerado pelos eletroímãs para produzir forças de repulsão entre o trem e o trilho. Assim, ele flutua acima dos trilhos e pode atingir velocidades superiores a 300 km/h.
HEWITT, P. Física conceitual. São Paulo: Artmed, 2002 (adaptado).

O maglev consegue atingir altas velocidades porque

A
não ocorre resistência elétrica nos trilhos.
B
não há atrito entre o trem e os trilhos.
C
o trem é construído de material muito leve.
D
o campo magnético gerado é capaz de impulsionar o trem.
14df8da2-dc
CESMAC 2015 - Física - Campo e Força Magnética, Magnetismo

Em um equipamento de ressonância magnética hospitalar, os sinais elétricos que são processados para obter uma imagem são captados por um solenóide constituído de 10 espiras circulares idênticas de raio 30,0 cm. No intervalo de tempo de 0,001 s, um campo magnético uniforme em toda a região do solenóide, perpendicular ao plano das espiras, varia linearmente no tempo de 0 até 0,010 T. Considere para efeito de cálculo que π = 3. Calcule o módulo da força eletromotriz induzida no solenóide.

A
1,0 V
B
3,0 V
C
9,0 V
D
27,0 V
E
81,0 V
14d165ff-dc
CESMAC 2015 - Física - Magnetismo Elementar, Magnetismo

Duas ondas eletromagnéticas, com comprimento de onda 400 nm (1 nm = 109 m), são emitidas em fase a partir dos pontos O1 e O2, equidistantes do ponto P (ver figura a seguir). Considere as ondas que se propagam em sentidos opostos, ao longo do eixo x. No percurso, estas ondas atravessam placas de plástico transparente, de mesmo comprimento L = 4,00 µm (1 µm = 106 m) e índices de refração n1 = 1,40 (placa 1) e n2 = 1,55 (placa 2). Denotando por Imax a máxima intensidade luminosa possível resultante da interferência destas ondas, pode-se afirmar que a intensidade luminosa registrada por um detector no ponto P é:

A
0
B
Imax/4
C
Imax/3
D
Imax/2
E
Imax