Questõesde Unichristus sobre Eletricidade

1
1
1
Foram encontradas 13 questões
2b113a3c-ff
Unichristus 2018 - Física - Eletrostática e Lei de Coulomb. Força Elétrica., Eletricidade

O capacitor de placas paralelas é um dispositivo elétrico que apresenta duas paredes paralelas condutoras e idênticas frente a frente, mas, entre elas, existe um meio dielétrico. Quando carregado, as placas determinam uma diferença de potencial ao dispositivo, gerando um campo elétrico uniforme entre as placas, armazenando, assim, energia potencial elétrica.



Na figura, o capacitor já está carregado. Sendo A a área de cada placa, d a distância entre elas e ε a permissividade elétrica do dielétrico, pode-se afirmar que a capacitância C desse capacitor é proporcional

A
diretamente de A e diretamente de d.
B
diretamente de A e inversamente de d.
C
inversamente de A e diretamente de d.
D
inversamente de A e inversamente de d.
E
apenas de ε .
2b05577c-ff
Unichristus 2018 - Física - Eletrodinâmica - Corrente Elétrica, Campo e Força Magnética, Magnetismo Elementar, Magnetismo, Eletrostática e Lei de Coulomb. Força Elétrica., Eletricidade

As ondas eletromagnéticas são caracterizadas por interações entre campos elétricos e magnéticos ortogonais variáveis com o tempo. É um exemplo desse tipo de ondas as

A
ondas do mar.
B
ondas sonoras.
C
micro-ondas.
D
ondas ultrassônicas.
E
ondas infrassônicas.
819d6a01-01
Unichristus 2015 - Física - Eletrodinâmica - Corrente Elétrica, Cargas Elétricas e Eletrização, Campo e Força Magnética, Magnetismo Elementar, Magnetismo, Eletrostática e Lei de Coulomb. Força Elétrica., Eletricidade

O QUE É O VENTO SOLAR?

Nada menos que 1 milhão de toneladas de matéria o Sol ejeta a cada segundo. Ela é formada por elétrons e núcleos de átomos de elementos abundantes na estrela, como hidrogênio e hélio. Acelerados pelo calor solar, eles escapam do seu campo gravitacional. “Esse turbilhão tem um campo magnético próprio que interage com o da Terra e, assim, afeta o nosso planeta”, diz o astrônomo Enos Picazzio, da USP.

Disponível em: http://mundoestranho.abril.com.br/ Acesso em: 20 de agosto de 2015.


Um desses elétrons que possui a carga elementar de 1,6 ˑ 10–19 C penetra no campo magnético do planeta cuja magnitude vale 1,2 ˑ 10–7 T. Desprezando os efeitos gravitacionais, qual é o raio da trajetória descrita por esse elétron de massa 9,10–31 kg, sabendo que tal partícula penetra perpendicularmente o campo magnético terrestre com uma velocidade de módulo 8 ˑ 106 m/s?

A
ˑ225 m.
B
300 m.
C
375 m.
D
500 m.
E
625 m.
81914850-01
Unichristus 2015 - Física - Eletrodinâmica - Corrente Elétrica, Campo e Força Magnética, Magnetismo, Eletricidade

A descoberta de que a Terra possui um campo magnético, comportando-se como um grande ímã, ocorreu em 1600, com trabalhos do físico e médico inglês William Gilbert. A origem desse campo magnético e as suas consequências para a Terra ainda são objeto de estudo, mas sua importância é incontestável. Foi ele que permitiu as grandes navegações, pelo uso da bússola (os modernos navios usam GPS). É ele também que nos protege das partículas carregadas de eletromagnetismo provenientes do Sol (vento solar), a 700 km/s, e de outros pontos da galáxia (além de afetar seriamente as transmissões de rádio e televisão, há evidências de que as tormentas magnéticas aumentam as ocorrências de ataques cardíacos).

Fonte: http://www.cprm.gov.br/


Uma linha de transmissão que chega à cidade de Fortaleza é percorrida por uma corrente de 1000 Ampères. Em relação ao campo magnético terrestre, a linha de transmissão está com uma inclinação de 30° . Sabendo que o campo magnético terrestre nessa localização do planeta assume a intensidade de 4 mT, a alternativa que determina a força magnética a que um trecho de 80 metros dessa linha de transmissão estará submetido é

A
80 Newtons.
B
120 Newtons.
C
160 Newtons.
D
200 Newtons.
E
240 Newtons.
817a19ba-01
Unichristus 2015 - Física - Eletrodinâmica - Corrente Elétrica, Resistores e Potência Elétrica, Eletricidade

O aspirador de pó funciona com um motor elétrico de sucção. Esse aparelho está ligado a uma rede elétrica de 120 Volts e, em funcionamento normal, é percorrido por uma corrente de 4 Ampères. Sabendo que a força contra eletromotriz do motor vale 72 Volts, qual será a corrente que percorrerá o aspirador se o motor do dispositivo tiver sido bloqueado por algum detrito sugado pelo sistema de aspiração?

A
2 A.
B
5 A.
C
8 A.
D
10 A.
E
12 A.
816a8415-01
Unichristus 2015 - Física - Cargas Elétricas e Eletrização, Eletrostática e Lei de Coulomb. Força Elétrica., Eletricidade

Em uma ligação iônica, os átomos estão ligados pela atração de íons com cargas opostas. Um exemplo dessa ligação é o KCℓ. A força de Coulomb entre os dois íons é atrativa, mas, à medida que os elétrons das demais camadas sofrem superposições, produzem efeitos repulsivos de modo que a configuração molecular estável corresponde a um balanço entre esses efeitos de modo que, na molécula, ocorre uma força atrativa de mais longo alcance e uma força repulsiva de mais curto alcance.

Fonte: http://www.cesarzen.com


Na molécula de KCℓ, a distância entre os íons vale cerca de 3 ˑ 10–10 m. Considerando que o meio de interação elétrica entre os íons é o vácuo de constante eletrostática K0 = 9 ˑ 109 N ˑ m2 ˑ C–2 e o módulo da carga elementar e = 1,6 ˑ 10–19 C, qual é a energia mínima necessária para separar esses íons de forma que fiquem infinitamente afastados? 

A
3,2 eV.
B
4,8 eV.
C
6,4 eV.
D
7,2 eV.
E
8,4 eV.
8172746d-01
Unichristus 2015 - Física - Eletrodinâmica - Corrente Elétrica, Resistores e Potência Elétrica, Indução e Transformadores Elétricos, Campo e Força Magnética, Magnetismo, Eletricidade

Em um automóvel, existe um dispositivo que tem uma função semelhante à de um gerador – o alternador. Tal componente funciona através do princípio físico que tem como base a indução eletromagnética com o objetivo final, no caso do automóvel, de carregar a bateria. O processo de carregamento da bateria do automóvel pode ser explicado, pois a rotação do eixo do alternador através de uma correia presa a uma polia interligada ao eixo do motor (virabrequim)

A
causará a variação do fluxo elétrico no interior de um circuito fechado que, por conseguinte, gerará uma corrente que carregará a bateria.
B
causará a variação do fluxo magnético no interior de um circuito fechado que, por conseguinte, gerará uma corrente que carregará a bateria.
C
manterá o fluxo magnético constante no interior de um circuito fechado que, por conseguinte, gerará uma corrente que carregará a bateria.
D
manterá o fluxo elétrico constante no interior de um circuito fechado que, por conseguinte, gerará uma corrente que carregará a bateria.
E
causará a variação do fluxo de corrente no interior de um circuito fechado que, por conseguinte, gerará uma diferença de potencial que carregará a bateria.
81666fc4-01
Unichristus 2015 - Física - Física Moderna, Física Atômica e Nuclear, Eletrostática e Lei de Coulomb. Força Elétrica., Eletricidade

Em geral, os elementos alcalinos Li, Na, K, Rb e Cs são os mais facilmente ionizáveis, pois eles têm um único elétron na última camada, fracamente ligado ao núcleo. Os outros elétrons fazem a blindagem do campo elétrico atrativo do núcleo, e a força que liga o último elétron ao átomo é equivalente à atração coulombiana entre ele e um próton no núcleo. O gráfico a seguir ilustra a energia de ionização de um elétron de valência versus o número atômico.  


Texto e Figura: Okuno – Física das Radiações  


Dessa forma, observando o gráfico, pode-se afirmar que, para arrancar um elétron de camadas mais internas, que também ocorre em interações ionizantes, é necessária uma energia cujo valor 

A
diminui à medida que aumenta o número atômico.
B
aumenta à medida que diminui o número atômico.
C
permanece constante à medida que diminui o número atômico.
D
aumenta à medida que aumenta o número atômico.
E
permanece constante à medida que aumenta o número atômico.
eb8e3ec9-ff
Unichristus 2016 - Física - Eletrodinâmica - Corrente Elétrica, Resistores e Potência Elétrica, Eletricidade

Fluxo sanguíneo é a quantidade de sangue que passa por uma secção transversal de um vaso, por unidade de tempo. Normalmente, o fluxo sanguíneo é medido em mililitros por minuto ou litros por minuto. Em um adulto, em condições normais e no estado de repouso, o fluxo é cerca de 5.000 mL/min.

O fluxo ao longo de um vaso é definido por dois fatores: o gradiente de pressão entre as extremidades deste vaso e a resistência ao fluxo. Sendo assim, o fluxo é diretamente proporcional à diferença de pressão entre as duas extremidades de um vaso, porém inversamente proporcional à resistência. A diferença de pressão entre as duas extremidades não é a pressão absoluta no vaso, pois, se a pressão nas extremidades fosse igual, não haveria fluxo.

Disponível em:<http://www.uff.br/fisio6/aulas/aula_03/topico_11.htm> . Acesso em: 8 de outubro de 2016.


Na situação descrita, a lei física que traduz o conceito de fluxo é a

A
Lei de Fourier.
B
1ª Lei de Ohm.
C
Lei de Ampère.
D
Lei de Faraday.
E
Lei de Snell.
eb6850bc-ff
Unichristus 2016 - Física - Cargas Elétricas e Eletrização, Eletrostática e Lei de Coulomb. Força Elétrica., Eletricidade

A integridade da membrana plasmática é vital para que as células executem de forma eficiente suas funções. A membrana celular é uma estrutura composta por duas camadas lipídicas que separam o meio intracelular do extracelular. 


Disponível em:<http://cronodon.com/BioTech/Membranes.htm> .


Por ser uma estrutura em bicamada isolante e possuir a propriedade de separar soluções condutoras tanto do meio intra como do extracelular, a membrana plasmática é responsável pelas propriedades dielétricas das células e tem características capacitivas, demonstrando uma capacitância de 1 µF/cm2 .

OBS.:Considere a permissividade do vácuo como sendo 9 x 10–12 F/m e a constante dielétrica dos lipídios igual a 2.


Sobre o exposto acima, pode-se afirmar que a espessura d da membrana plasmática é, aproximadamente, igual a

A
1,8 ˑ 10–5 m
B
1,8 ˑ 10–9 m
C
1,8 ˑ 10–16 m
D
9 ˑ 10–16 m
E
9 ˑ 10–9 m
eb6c0a5b-ff
Unichristus 2016 - Física - Resistores e Potência Elétrica, Circuitos Elétricos e Leis de Kirchhoff, Eletricidade

Em cidades de clima frio, o uso do chuveiro elétrico se torna indispensável. Um chuveiro possui as posições quente, morna e fria. Quando a chave seletora estiver na posição fria, o chuveiro estará desligado. O controle da temperatura é regulado pela variação da resistência elétrica que, consequentemente, modificará a corrente. Dessa forma, teremos água em temperaturas maiores ou menores. Chamando de RQ e RM as resistências nas posições quente e morna e iQ e iM as correntes nas mesmas posições, pode-se afirmar que

A
RQ > RM e iQ > iM
B
RQ > RM e iQ < iM
C
RQ < RM e iQ > iM
D
RQ < RM e iQ < iM
E
RQ < RM e iQ = iM
eb595ba5-ff
Unichristus 2016 - Física - Eletrodinâmica - Corrente Elétrica, Indução e Transformadores Elétricos, Cargas Elétricas e Eletrização, Magnetismo, Eletrostática e Lei de Coulomb. Força Elétrica., Eletricidade

Sempre quando temos uma diferença de potencial muito grande entre nuvens ou entre nuvens e terra, podemos ter uma descarga elétrica. É justamente a essa descarga elétrica que damos o nome de raio. Dentro das nuvens, ocorrem as chamadas correntes de convecção. Muitas vezes, essas correntes de ar são tão fortes que as colisões entre o granizo e os cristais de gelo dentro da nuvem eletrizam os cristais com carga positiva e o granizo com carga negativa.

Disponível em:<https://www.infoenem.com.br/> .


Caso essa eletrização seja muito alta, ocorre a indução de uma carga positiva na superfície da Terra, estabelecendo um campo elétrico. Assim, se o campo se tornar muito intenso,

A
poderá ser superada a rigidez dielétrica do ar, ocorrendo a descarga atmosférica – o raio.
B
poderá ser superada a rigidez condutora do ar, ocorrendo a descarga atmosférica – o raio.
C
poderá ser superada a permissividade magnética do ar, ocorrendo a descarga atmosférica – o raio.
D
poderá ser superada a permeabilidade magnética do ar, ocorrendo a descarga atmosférica – o raio.
E
poderá ser superada a resistividade elétrica do ar, ocorrendo a descarga atmosférica – o raio.
eb555904-ff
Unichristus 2016 - Física - Eletrodinâmica - Corrente Elétrica, Resistores e Potência Elétrica, Eletricidade

TORRADEIRA ELÉTRICA


Hoje em dia, a torradeira é um aparelho comum em praticamente todas as cozinhas do mundo, não existindo melhor método de se transformar o pão numa deliciosa torrada. Ela é um sistema que transforma energia proveniente da rede elétrica em energia térmica, que transfere calor para o pão ser torrado. A resistência é a responsável pelo aquecimento da torradeira quando ela é conectada a uma fonte de energia elétrica (efeito joule). O elemento de aquecimento de uma torradeira costuma ser um fio feito de uma liga metálica, como níquel e cromo, que tem uma resistência maior do que a de um fio de cobre. Quando a torradeira é ligada, uma corrente flui através do fio, e a resistência faz que o fio se aqueça e fique com uma cor laranja-avermelhada, criando um fluxo de calor que aquece a superfície do pão.

Disponível em:<http://www.proac.uff.br/petroleo/sites/default/files/Relatorio_da_Sanduicheira.pdf> . Acesso: 24/09/2016


Considere uma torradeira de potência 600 W ligada a uma rede de 120 V. A resistividade da liga metálica é ρ = 1,5 10–6 Ω.m, e o diâmetro da secção transversal do fio vale 0,5 mm. Assim, o comprimento do condutor usado nesse modelo de torradeira seria de


Dado: π = 3

A
1 m.
B
1,5 m.
C
2,5 m.
D
3,0 m.
E
4,0 m.