Questõesde EINSTEIN sobre Dinâmica

1
1
1
Foram encontradas 7 questões
2e90673c-db
EINSTEIN 2017 - Física - Dinâmica, Calorimetria, Trabalho e Energia, Física Térmica - Termologia

• Nos veículos com motores refrigerados por meio líquido, o aquecimento da cabine de passageiros é feito por meio da troca de calor entre o duto que conduz o líquido de arrefecimento que circula pelo motor e o ar externo. Ao final, esse ar que se encontra aquecido, é lançado para o interior do veículo. Num dia frio, o ar externo, que está a uma temperatura de 5°C, é lançado para o interior da cabine, a 30°C, a uma taxa de 1,5L/s. Determine a potência térmica aproximada, em watts, absorvida pelo ar nessa troca de calor.



A
20
B
25
C
45
D
60
2e80ef74-db
EINSTEIN 2017 - Física - Dinâmica, Leis de Newton

• Uma bailarina de massa 50kg encontra-se apoiada em um dos pés num dos extremos de uma viga retangular de madeira cuja distribuição da massa de 100kg é homogênea. A outra extremidade da viga encontra-se ligada a um cabo de aço inextensível, de massa desprezível e que faz parte de um sistema de polias, conforme a figura. Sabendo que o sistema encontra-se em equilíbrio estático, determine, em unidades do SI, a massa M que está suspensa pelo sistema de polias.



A
125
B
600
C
1000
D
2500
2e8897c7-db
EINSTEIN 2017 - Física - Dinâmica, Leis de Newton, Grandezas e Unidades, Conteúdos Básicos

• Um caminhão tanque, estacionado sobre um piso plano e horizontal, tem massa de 12 toneladas quando o tanque transportador, internamente cilíndrico, de raio interno 1m, está totalmente vazio. Quando esse tanque está completamente cheio de combustível, ele fica submetido a uma reação normal do solo de 309.600N. Com base nessas informações e nas contidas no gráfico, referentes ao combustível transportado, determine o comprimento interno do tanque cilíndrico, em unidades do SI. Suponha invariável a densidade do combustível em função da temperatura.


A
8
B
10
C
12
D
15
4ecfaf8f-d8
EINSTEIN 2017 - Física - Fundamentos da Cinemática, Plano Inclinado e Atrito, Dinâmica, Cinemática

Um bloco é lançado com velocidade inicial v0 , em movimento ascendente, num longo plano inclinado que forma um ângulo Ɵ com a direção horizontal. O coefi ciente de atrito cinético entre as superfícies do bloco e do plano vale μ e o módulo da aceleração da gravidade local vale g. A expressão algébrica que possibilita determinar a máxima distância percorrida pelo bloco durante a subida e o respectivo tempo gasto nesse deslocamento é:


A


B

C


D


33b3c0c2-d8
EINSTEIN 2018 - Física - Máquina de Atwood e Associação de Blocos, Dinâmica, Leis de Newton

Um bloco de massa m = 4 kg é mantido em repouso, preso a uma corda de densidade linear de massa µ = 4 × 10–3 kg/m, que tem sua outra extremidade fixa no ponto A de uma parede vertical. Essa corda passa por uma roldana ideal presa em uma barra fixa na parede, formando um ângulo de 60º com a barra. Considere que um diapasão seja colocado para vibrar próximo desse sistema e que ondas estacionárias se estabeleçam no trecho AB da corda.

Sabendo que a velocidade de propagação de uma onda por uma corda de densidade linear de massa μ, submetida a uma força de tração T, é dada por v = , que g = 10 m/s2 , que cos 60º = sen 30º = 0,5 e considerando as informações da figura, pode-se afirmar que a frequência fundamental de ondas estacionárias no trecho AB da corda é

A
56 Hz.
B
50 Hz.
C
35 Hz.
D
48 Hz.
E
40 Hz.
33aae23a-d8
EINSTEIN 2018 - Física - Plano Inclinado e Atrito, MCU - Movimento Circular Uniforme, Dinâmica, Leis de Newton, Cinemática

A figura mostra a visão superior de um carro, de massa 1200 kg, trafegando por uma pista horizontal e fazendo uma curva segundo a trajetória indicada. O trecho contido entre os pontos A e B é um arco de circunferência de raio R = 100 m e centro C.

Considerando que o trecho AB da trajetória é percorrido pelo carro em 5 s com velocidade escalar constante e que π = 3, a força de atrito que mantém esse carro na curva, nesse trecho, tem intensidade

A
3600 N.
B
1200 N.
C
2400 N.
D
4800 N.
E
800 N.
33adda0d-d8
EINSTEIN 2018 - Física - Dinâmica, Transformações Gasosas, Trabalho e Energia, Física Térmica - Termologia, Gás Ideal

Para provocar a transformação gasosa ABC, representada no diagrama P × V, em determinada massa constante de gás ideal, foi necessário fornecer-lhe 1400 J de energia em forma de calor, dos quais 300 J transformaram-se em energia

Considerando não ter havido perda de energia, o trabalho realizado pelas forças exercidas pelo gás no trecho AB dessa transformação foi de

A
600 J.
B
400 J.
C
500 J.
D
1100 J.
E
800 J.